
Informática Gráfica

Ejercicio Resueltos

Ismael Sallami Moreno

Recursos Ingeniería Informática y Ade

https://elblogdeismael.github.io

Licencia
Este trabajo está bajo una Licencia
Creative Commons BY-NC-ND 4.0.

Permisos: Se permite compartir, copiar
y redistribuir el material en cualquier
medio o formato.

Condiciones: Es necesario dar crédito
adecuado, proporcionar un enlace a la
licencia e indicar si se han realizado
cambios. No se permite usar el material
con fines comerciales ni distribuir
material modificado.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

Informática Gráfica

Ismael Sallami Moreno

Índice general

I Teoría 7

1 Ejercicios Teóricos 15

1.1 Sesión 2 . 15

1.2 Sesión 3 . 36

1.3 Sesión 4 . 51

1.4 Sesión 5 . 65

1.5 Sesión 6 . 80

1.6 Sesión 7 .101

1.7 Sesión 8 . 107

1.8 Sesión 9 . 120

1.9 Sesión 10 . 130

1.10 Sesión 11 . 140

5

Índice general 6

Informática Gráfica Ismael Sallami Moreno

Parte I

Teoría

7

9

Nota: Se adjunta un índice para buscar más fácil el contenido.

I. Matemáticas y Demostraciones Vectoriales
Fundamentos teóricos sobre operaciones con vectores, matrices y transformaciones.

– 1.2.1 Producto Escalar (Dot Product)
Demostración del cálculo mediante suma de componentes en base ortonormal.

– 1.2.2 Producto Vectorial (Cross Product)
Demostración del cálculo utilizando coordenadas cartesianas.

– 1.2.3 Ortogonalidad
Demostración de que el producto vectorial es perpendicular a los vectores originales.

– 1.2.4 Invariancia Rotacional 2D
Prueba de que el producto escalar se mantiene constante tras aplicar una rotación.

– 1.2.5 Isometría (Conservación de Norma)
Demostración de que la rotación no altera la longitud del vector.

– 1.2.6 Rotación de 90 Grados
Demostración de perpendicularidad: v⃗ ·R(v⃗) = 0.

– 1.2.7 Matrices Ortonormales
Análisis de la matriz de rotación 2D: filas y columnas unitarias y ortogonales.

– 1.2.8 No Conmutatividad (Escalado)
Prueba de que R · S ̸= S ·R si el escalado no es uniforme.

– 1.2.9 No Conmutatividad (Traslación)
Prueba de que el orden importa entre rotación y traslación.

– 1.2.10 Invariancia en 3D
El producto escalar es invariante bajo rotaciones en ejes cartesianos.

– 1.2.11 Rotación del Producto Cruz
Demostración de la propiedad distributiva de la rotación sobre el producto vectorial.

II. Implementación en GDScript (Godot)
Scripts para generación de geometría, jerarquías de escena y lógica de control.

Informática Gráfica Ismael Sallami Moreno

10

A. Geometría Procedural y Mallas
– 1.1.1 Polígono Regular Relleno

Creación de una malla de N lados mediante MeshInstance2D.

– 1.1.2 Gradientes de Color
Uso de Vertex Colors para interpolación de colores en la malla.

– 1.1.4 Visualización de Aristas (Wireframe)
Diferencias de implementación entre mallas indexadas y no indexadas.

– 1.1.5 Debug de Normales
Script global (autoload) para generar líneas que visualicen las normales de una malla.

– 1.2.12 Función Gancho
Generación de una polilínea simple mediante código.

– 1.4.1 Figuras Compuestas
Script para generar un cuadrado azul con un triángulo inscrito y bordes diferenciados.

– 1.4.3 Triangulación Manual (Tronco)
Generación de un polígono cóncavo mediante descomposición en triángulos.

– 1.4.5 Modelado por Código (Logo Android)
Construcción 3D usando primitivas cilíndricas y semiesféricas.

B. Escena, Jerarquías y Animación
– 1.2.13 Instanciación y Pivotes

Rotaciones complejas alrededor de un punto de pivote desplazado.

– 1.4.2 Transformaciones Jerárquicas
Uso de nodos padre/hijo con escalado negativo (efecto espejo).

– 1.4.4 Árbol Fractal Recursivo
Script recursivo para generar ramas transformadas geométricamente.

– 1.8.1 Gestión de Input
Lógica para detectar la duración exacta de la pulsación de una tecla.

– 1.10.1 Curvas de Hermite
Interpolación suave de movimiento pasando por puntos de control con tangentes.

– 1.10.2 Oscilación Controlada
Movimiento periódico con velocidad constante y rebote exacto en extremos.

– 1.10.3 Reloj Analógico
Rotación de agujas sincronizada con el tiempo del sistema (Time).

– 1.10.4 Simulación de Péndulo
Animación basada en funciones armónicas (sin/cos) para oscilación física.

– 1.10.5 Tiro Parabólico
Animación física basada en la ecuación p = p0 + v0t + 0,5at2.

Informática Gráfica Ismael Sallami Moreno

11

III. Algoritmos y Pseudocódigo (Ray Tracing)
Diseño lógico para cálculo de intersecciones y selección (Picking).

– 1.8.2 Intersección Rayo-Triángulo
Algoritmo completo: Intersección con plano + Coordenadas Baricéntricas.

– 1.8.3 Picking (Unproject)
Cálculo del rayo 3D en coordenadas de mundo a partir de un click en pantalla 2D.

– 1.9.1 Intersección Rayo-Disco
Lógica de intersección plano-rayo y verificación de distancia al centro (radio).

– 1.9.2 Intersección Rayo-Esfera
Resolución mediante ecuación cuadrática para esferas unitarias y genéricas.

– 1.9.3 Intersección Rayo-Cilindro/Cono
Algoritmos para cuádricas infinitas con clipping por altura finita.

– 1.3.5 Extracción de Aristas
Algoritmo para generar una tabla de aristas únicas desde una lista de triángulos.

– 1.3.6 Cálculo de Área
Algoritmo para sumar las áreas de los triángulos de una malla (producto cruz).

IV. Teoría de Mallas y Texturas
Eficiencia espacial, topología y mapeo de coordenadas UV.

– 1.3.1 Eficiencia de Memoria
Comparativa: Enumeración Espacial (Vóxeles O(k3)) vs Malla Indexada (O(k2)).

– 1.3.2 Rejilla Rectangular
Cálculo de memoria requerida para una topología de rejilla M ×N .

– 1.3.3 Triangle Strips
Análisis coste-beneficio: Ahorro de memoria vs coste de Vertex Shader.

– 1.3.4 Topología (Euler-Poincaré)
Demostración de relaciones en mallas cerradas: NA = 3(NV − 2).

– 1.7.1 Mapeo UV (Dado)
Diseño de tabla de vértices mínima (14 vértices) para textura continua.

– 1.7.2 Normales y Costuras (Hard Edges)
Justificación de duplicado de vértices (24) para iluminación en cubo.

Informática Gráfica Ismael Sallami Moreno

12

– 1.7.3 Textura Repetida (Tiling)
Tabla de coordenadas UV para repetir una imagen en todas las caras.

V. Cámara, Proyección e Iluminación
Matemáticas de la cámara virtual y modelos de reflexión de luz.

A. Configuración de Cámara
– 1.5.1 Cámara de Seguimiento

Script para posicionar la cámara detrás y arriba de un objetivo móvil.

– 1.5.2 LookAt (Ejes Alineados)
Cálculo de vectores a, u, n para una configuración ortogonal específica.

– 1.5.3 LookAt (Con Rotación)
Cálculo de vectores de cámara incluyendo rotación sobre el eje de vista (Roll).

– 1.5.4 Base de la Cámara
Código para derivar la base ortonormal (u, v, n) desde parámetros de vista.

– 1.5.5 Matriz de Vista
Construcción manual de la Transform3D (inversa de la cámara).

– 1.5.6 Control de Aspect Ratio
Script para mantener el FOV fijo (75º) independientemente del tamaño de ventana.

B. Proyección y Frustum
– 1.5.7 Frustum Ajustado (Cubo)

Cálculo de planos (n, f, l, r, t, b) para encuadrar perfectamente un cubo.

– 1.5.8 Frustum Ajustado (Esfera)
Ajuste de planos de proyección para encuadrar una esfera tangente.

– 1.5.9 Frustum No Cuadrado
Adaptación de la proyección para relaciones de aspecto Landscape y Portrait.

– 1.5.10 Posicionamiento por FOV
Cálculo de la distancia de la cámara dado un ángulo de apertura β.

C. Modelos de Iluminación
– 1.6.1 Especularidad

Implementación de las fórmulas de Phong y Blinn-Phong en GDScript.

– 1.6.2 Puntos de Brillo Máximo
Cálculo teórico de la posición del brillo en una esfera (Lambert/Phong).

Informática Gráfica Ismael Sallami Moreno

13

– 1.6.3 BRDF GGX (Microfacetas)
Implementación completa: Fresnel Schlick + Geometría + Distribución Normal.

Informática Gráfica Ismael Sallami Moreno

14

Informática Gráfica Ismael Sallami Moreno

Capítulo 1

Ejercicios Teóricos

Observación. Estos ejercicios usan una numeración distinta a la de las diapositivas, aunque están
en el mismo orden. Hay veces que cuandos se hace referencia a un ejercicio se usa la enumeración
de las diapositivas para encontrarlo más fácilmente. De la misma manera se recomienda revisar el
orden de defición de vértices y demás para triángulos por si es el correcto.

1.1 Sesión 2
Para la resolución de los siguientes ejercicios se ha usado varios scripts como autoload:

� �
1 # Script de Godot para asignar a un nodo de tipo 'Node2D '

2 # de forma que se visualizan los ejes , con fondo blanco , la

3 # vista 2D es controlable con el ratón.

4 # Fija la vista para que inicialmente la región visible incluya

a

5 # un cuadrado de lado 2 y centro en el origen ([-1,-1] ..

[+1 ,+1])

6

7 extends Node2D

8

9 # -------------------------------

10 # tamaños del viewport guardados

11

12 var viewport_tamano_dcc_int : Vector2i = Vector2i(0, 0) #

tamaño actual del area de dibujo en pixels (dcc)

13 var viewport_tamano_dcc : Vector2 = Vector2(0, 0)

14

15 var vp : Viewport = null

16

17 # -------------------------------

18 # Definición de la vista (transf. de vista , desde WCC a DC)

19

20 const ejeX := Vector2(1.0, 0.0)

21 const ejeY := Vector2(0.0, 1.0)

22

23 var tp : float = 1.0 # tamaño (== alto , ancho) de un pixel en

coords de mundo (WCC)

24 var cvp : Vector2 = Vector2(0, 0) # centro del viewport en

coordenadas de mundo (WCC)

15

1.1 Sesión 2 16

25 var fev : float = 1.0 # factor de escalado de la vista , se

controla con la rueda del ratón

26

27 # --------------------------

28 # Estado de arrastre del ratón

29

30 var raton_izq_pulsado : bool = false

31

32 # -------------------------------

33 # Actualiza la transformación de vista en función del tamaño del

área de dibujo

34

35 var c : int = 0

36

37 func _actualiza_transf_vista() -> void :

38

39 tp = 2.0/(fev*min(vp.size.x, vp.size.y))

40 var t1 := Transform2D(ejeX , ejeY , -cvp)

41 var t2 := Transform2D(ejeX/tp, -ejeY/tp, cvp +0.5*vp.size)

42 transform = t2*t1

43

44 # --------------------------

45 # Procesar evento de entrada.

46 # Se usa por ahora únicamente para controlar la vista 2d con el

ratón

47

48 func _unhandled_input(event : InputEvent):

49

50 var actualizada : bool = false

51

52 if event is InputEventMouseButton:

53 if event.button_index == MOUSE_BUTTON_LEFT:

54 raton_izq_pulsado = event.pressed

55

56 if event.button_index == MOUSE_BUTTON_WHEEL_UP:

57 fev *= 1.05

58 actualizada = true

59

60 if event.button_index == MOUSE_BUTTON_WHEEL_DOWN:

61 fev /= 1.05

62 actualizada = true

63

64 elif event is InputEventMouseMotion and raton_izq_pulsado:

65 cvp += tp * Vector2(-event.relative.x, +event.relative.y)

66 actualizada = true

67

68 elif event is InputEventKey:

69 if event.keycode == KEY_ESCAPE and event.is_released ():

Informática Gráfica Ismael Sallami Moreno

1.1 Sesión 2 17

70 get_tree ().quit()

71

72 if actualizada:

73 _actualiza_transf_vista()

74

75 # --

76 # crear objetos para los ejes y añadirlos como hijos

77

78 func _crear_ejes_2d () :

79

80 const w2 : float = 0.01 # mitad del ancho de la barra (en X)

81 const f : float = 2.5 # ancho de la flecha en X relativo al

ancho de la barra

82 const l : float = 0.9 # longitud de la flecha en Y (entre 0

y 1), resto hasta 1 es el triangulo.

83

84 # crear tablas para una barra (indexado) y un triángulo

85 var t_barra : Array = [] ; t_barra.resize(Mesh.ARRAY_MAX)

86 t_barra[Mesh.ARRAY_VERTEX] = PackedVector2Array ([

87 Vector2(-w2,-w2/2.0), Vector2(w2,-w2/2.0), Vector2(-w2,l),

Vector2(w2,l)

88])

89 t_barra[Mesh.ARRAY_INDEX] = PackedInt32Array ([0,1,2, 2,1,3

])

90

91 var t_tri : Array = [] ; t_tri.resize(Mesh.ARRAY_MAX)

92 t_tri[Mesh.ARRAY_VERTEX] = PackedVector2Array ([

93 Vector2(-w2*f,l), Vector2(w2*f,l), Vector2 (0,1)

94])

95

96 # crear un arrayMesh y añadir las dos surfaces

97 var am := ArrayMesh.new()

98 am.add_surface_from_arrays(Mesh.PRIMITIVE_TRIANGLES , t_barra

)

99 am.add_surface_from_arrays(Mesh.PRIMITIVE_TRIANGLES , t_tri)

100

101 # crear mesh instances , para ej X (rojo) y para eje Y (verde)

102 var ex := MeshInstance2D.new(); ex.mesh = am; ex.rotate(-PI

/2.0)

103 var ey := MeshInstance2D.new(); ey.mesh = am

104 ex.modulate = Color (1,0,0)

105 ey.modulate = Color (0,1,0)

106

107 # crear lineas en el eje X y en el Y

108 var lex := Line2D.new()

109 lex.points = PackedVector2Array ([Vector2(-1000 ,0), Vector2

(1000 ,0)])

110 lex.width = w2*0.75

Informática Gráfica Ismael Sallami Moreno

1.1 Sesión 2 18

111 lex.default_color = Color (1,0,0)

112 lex.antialiased = true

113

114 var ley := Line2D.new()

115 ley.points = PackedVector2Array ([Vector2(0,-1000), Vector2

(0 ,1000)])

116 ley.width = w2*0.75

117 ley.default_color = Color (0,1,0)

118 ley.antialiased = true

119

120 # añadir eje X e Y a un nuevo nodo 2D

121 var ejes := Node2D.new()

122 ejes.add_child(ex) ; ejes.add_child(lex)

123 ejes.add_child(ey) ; ejes.add_child(ley)

124 ejes.z_index = RenderingServer.CANVAS_ITEM_Z_MIN # ponerlo

detrás de todo

125

126 # poner ejes como hijo de este:

127 add_child(ejes)

128

129

130 # inicialización

131

132 func _ready () -> void:

133

134 _crear_ejes_2d ()

135 RenderingServer.set_default_clear_color(Color(1.0, 1.0, 1.0

))

136

137 # actualizar el viewport ('vp ') y la vista.

138 vp = get_viewport () ; assert(vp is Viewport)

139 _actualiza_transf_vista ()

140 vp.connect("size_changed", _actualiza_transf_vista)
� �
� �

1 extends Node

2

3 func genSegNormales(verts , norms : PackedVector3Array , lon :

float , color : Color) -> MeshInstance3D:

4 var line_verts = PackedVector3Array ()

5 var line_colors = PackedColorArray ()

6

7 for i in range(verts.size()):

8 var origen = verts[i]

9 var destino = origen + norms[i] * lon

10

11 line_verts.push_back(origen)

Informática Gráfica Ismael Sallami Moreno

1.1 Sesión 2 19

12 line_verts.push_back(destino)

13

14 line_colors.push_back(color)

15 line_colors.push_back(color)

16

17 var arrays = []

18 arrays.resize(Mesh.ARRAY_MAX)

19 arrays[Mesh.ARRAY_VERTEX] = line_verts

20 arrays[Mesh.ARRAY_COLOR] = line_colors

21

22 var arr_mesh = ArrayMesh.new()

23 arr_mesh.add_surface_from_arrays(Mesh.PRIMITIVE_LINES , arrays)

24

25 var material = StandardMaterial3D.new()

26 material.shading_mode = BaseMaterial3D.SHADING_MODE_UNSHADED

27 material.vertex_color_use_as_albedo = true

28

29 var mi = MeshInstance3D.new()

30 mi.mesh = arr_mesh

31 mi.material_override = material

32

33 return mi

34

35 func gancho () -> ArrayMesh:

36 var vertices = PackedVector2Array ([

37 Vector2 (0,0),

38 Vector2 (1,0),

39 Vector2 (1,1),

40 Vector2 (0,1),

41 Vector2 (0,2)

42])

43

44 var arrays = []

45 arrays.resize(Mesh.ARRAY_MAX)

46 arrays[Mesh.ARRAY_VERTEX] = vertices

47

48 var mesh = ArrayMesh.new()

49 mesh.add_surface_from_arrays(Mesh.PRIMITIVE_LINE_STRIP , arrays

)

50 return mesh
� �
� �

1 extends Node

2 y

3 # Transformación identidad auxiliar para facilitar la lectura

del código

4 var tr_identidad := Transform2D ()

Informática Gráfica Ismael Sallami Moreno

1.1 Sesión 2 20

5

6 # Variables para almacenar las mallas generadas

7 var cuadrado: ArrayMesh

8 var triangulo: ArrayMesh

9 var casa: ArrayMesh

10 var circunferencia: ArrayMesh

11

12

13 # ===========================

14 # FUNCIÓN: _inicializar_meshes

15 # Propósito: Construye las geometrías básicas (primitivas) que

se reutilizarán.

16 # Se ejecuta una sola vez al inicio para optimizar memoria.

17 # ===========================

18 func _inicializar_meshes ():

19 # Definición del Cuadrado (Unitario)

20 cuadrado = CrearArrayMesh(PackedVector2Array ([

21 Vector2 (0.0, 0.0), Vector2 (1.0, 0.0),

22 Vector2 (1.0, 1.0), Vector2 (0.0, 1.0),

23 Vector2 (0.0, 0.0)

24]))

25

26 # Definición del Triángulo

27 triangulo = CrearArrayMesh(PackedVector2Array ([

28 Vector2 (0.0, 0.0), Vector2 (1.0, 0.0), Vector2 (0.0, 1.0),

29 Vector2 (0.0, 0.0)

30]))

31

32 # Definición de la Casa (Polígono irregular)

33 casa = CrearArrayMesh(PackedVector2Array ([

34 Vector2 (0.0, 0.0), Vector2 (1.0, 0.0),

35 Vector2 (1.0, 1.0), Vector2 (0.5, 1.4), Vector2 (0.0, 1.0),

36 Vector2 (0.0, 0.0)

37]))

38

39 # Definición de la Circunferencia (64 segmentos)

40 circunferencia = CrearCircunferencia (64)

41

42

43 # ===========================

44 # FUNCIONES AUXILIARES: GENERACIÓN DE GEOMETRÍA

45 # ===========================

46

47 # ===========================

48 # Función: CrearArrayMesh

49 # Descripción: Crea un objeto ArrayMesh a partir de un array de

vectores.

50 # Usa la primitiva PRIMITIVE_LINE_STRIP (polilínea abierta).

Informática Gráfica Ismael Sallami Moreno

1.1 Sesión 2 21

51 # Parámetros: v (PackedVector2Array) - Lista de vértices.

52 # Retorno: ArrayMesh configurado.

53 # ===========================

54 func CrearArrayMesh(v: PackedVector2Array) -> ArrayMesh:

55 var tablas: Array = []

56 tablas.resize(Mesh.ARRAY_MAX)

57 tablas[Mesh.ARRAY_VERTEX] = v

58 var am: ArrayMesh = ArrayMesh.new()

59 am.add_surface_from_arrays(Mesh.PRIMITIVE_LINE_STRIP , tablas)

60 return am

61

62 # ===========================

63 # Función: CrearCircunferencia

64 # Descripción: Genera una malla circular aproximada por

segmentos de línea.

65 # Parámetros: n (int) - Número de segmentos (resolución).

66 # Retorno: ArrayMesh con la forma de la circunferencia.

67 # ===========================

68 func CrearCircunferencia(n: int) -> ArrayMesh:

69 var v := PackedVector2Array ()

70 for i in range(n + 1):

71 var a: float = (float(i) * 2.0 * PI) / float(n)

72 v.append(Vector2(cos(a), sin(a)))

73 return CrearArrayMesh(v)

74

75

76 # ===========================

77 # FUNCIONES AUXILIARES: INSTANCIACIÓN Y TRANSFORMACIÓN DE NODOS

78 # ===========================

79

80 # ===========================

81 # Función: CrearMeshInstance2D

82 # Descripción: Crea un nodo visual (MeshInstance2D) asignándole

una malla y una

83 # transformación inicial. Asigna un color azul por defecto (

modulate).

84 # Parámetros:

85 # - am: La malla (ArrayMesh) a visualizar.

86 # - tr: La transformación (Transform2D) a aplicar.

87 # Retorno: MeshInstance2D listo para añadir al árbol.

88 # ===========================

89 func CrearMeshInstance2D(am: ArrayMesh , tr: Transform2D) ->

MeshInstance2D:

90 var mi := MeshInstance2D.new()

91 mi.transform = tr

92 mi.modulate = Color (0.0, 0.0, 0.7) ## Azul estándar

93 mi.mesh = am

94 return mi

Informática Gráfica Ismael Sallami Moreno

1.1 Sesión 2 22

95

96 # ===========================

97 # Función: TransformaNode2D

98 # Descripción: Aplica una transformación adicional a un nodo

existente.

99 # Realiza una composición por la izquierda (tr * n.transform).

100 # Parámetros:

101 # - n: El nodo a transformar.

102 # - tr: La matriz de transformación a aplicar.

103 # Retorno: El mismo nodo 'n' modificado.

104 # ===========================

105 func TransformaNode2D(n: Node2D , tr: Transform2D) -> Node2D:

106 n.transform = tr * n.transform

107 return n

108

109

110 # ===========================

111 # CONSTRUCCIÓN DEL MODELO JERÁRQUICO (ÁRBOL 2D)

112 # Funciones que construyen las partes compuestas del objeto "

Casa".

113 # ===========================

114

115 # ===========================

116 # Componente: Pomo

117 # Descripción: Crea el pomo de la puerta usando la

circunferencia escalada y trasladada.

118 # ===========================

119 func Pomo() -> Node2D:

120 var tra = Transform2D ().translated(Vector2 (0.1, 0.5))

121 var esc = Transform2D ().scaled(Vector2 (0.06, 0.06))

122 return CrearMeshInstance2D(circunferencia , tra * esc)

123

124 # ===========================

125 # Componente: HojaDer (Hoja Derecha)

126 # Descripción: Crea una hoja de puerta compuesta por un cuadrado

y un pomo.

127 # ===========================

128 func HojaDer () -> Node2D:

129 var tra = Transform2D ().translated(Vector2 (0.5, 0.0))

130 var esc = Transform2D ().scaled(Vector2 (0.5, 1.0))

131 var n = Node2D.new()

132 # Añade el pomo transformado

133 n.add_child(TransformaNode2D(Pomo(), tra))

134 # Añade la base de la hoja (cuadrado transformado)

135 n.add_child(CrearMeshInstance2D(cuadrado , tra * esc))

136 return n

137

138 # ===========================

Informática Gráfica Ismael Sallami Moreno

1.1 Sesión 2 23

139 # Componente: Puerta

140 # Descripción: Crea una puerta doble compuesta por una hoja

normal y otra reflejada.

141 # ===========================

142 func Puerta () -> Node2D:

143 var tra = Transform2D ().translated(Vector2 (1.0, 0.0))

144 var esc = Transform2D ().scaled(Vector2(-1.0, 1.0)) # Escalado

negativo para reflejar

145 var n = Node2D.new()

146 n.add_child(HojaDer ()) # Hoja derecha original

147 n.add_child(TransformaNode2D(HojaDer (), tra * esc)) # Hoja

izquierda (reflejada)

148 return n

149

150 # ===========================

151 # Componente: MarcoIzq (Marco Izquierdo)

152 # Descripción: Parte decorativa de la ventana , compuesta por un

cuadrado y un triángulo.

153 # ===========================

154 func MarcoIzq () -> Node2D:

155 var tra = Transform2D ().translated(Vector2 (0.0, 1.0))

156 var esc = Transform2D ().scaled(Vector2 (0.9, -0.8))

157 var n = Node2D.new()

158 n.add_child(CrearMeshInstance2D(cuadrado , tr_identidad))

159 n.add_child(CrearMeshInstance2D(triangulo , tra * esc))

160 return n

161

162 # ===========================

163 # Componente: Marcos

164 # Descripción: Conjunto de marcos para la ventana (izquierdo y

derecho reflejado).

165 # ===========================

166 func Marcos () -> Node2D:

167 var esc1 = Transform2D ().scaled(Vector2 (0.8, 1.0))

168 var tra = Transform2D ().translated(Vector2 (2.4, 0.0))

169 var esc2 = Transform2D ().scaled(Vector2(-1.0, 1.0))

170 var n = Node2D.new()

171 n.add_child(TransformaNode2D(MarcoIzq (), esc1))

172 n.add_child(TransformaNode2D(MarcoIzq (), esc1 * tra * esc2))

173 return n

174

175 # ===========================

176 # Componente: Ventana

177 # Descripción: Crea una ventana completa con fondo (cuadrado) y

marcos interiores.

178 # ===========================

179 func Ventana () -> Node2D:

180 var tra = Transform2D ().translated(Vector2 (0.1, 0.1))

Informática Gráfica Ismael Sallami Moreno

1.1 Sesión 2 24

181 var esc = Transform2D ().scaled(Vector2 (0.4, 0.8))

182 var n = Node2D.new()

183 n.add_child(CrearMeshInstance2D(cuadrado , tr_identidad))

184 n.add_child(TransformaNode2D(Marcos (), tra * esc))

185 return n

186

187 # ===========================

188 # Componente: InstPuerta (Instancia de Puerta)

189 # Descripción: Instancia la puerta completa en su posición final

relativa a la fachada.

190 # ===========================

191 func InstPuerta () -> Node2D:

192 var tra = Transform2D ().translated(Vector2 (0.56, 0.0))

193 var esc = Transform2D ().scaled(Vector2 (0.3, 0.43))

194 var n = Node2D.new()

195 n.add_child(TransformaNode2D(Puerta (), tra * esc))

196 return n

197

198 # ===========================

199 # Componente: InstVentana (Instancia de Ventana)

200 # Descripción: Prepara una instancia de ventana con una escala

base.

201 # ===========================

202 func InstVentana () -> Node2D:

203 var esc = Transform2D ().scaled(Vector2 (0.3, 0.3))

204 var n = Node2D.new()

205 n.add_child(TransformaNode2D(Ventana (), esc))

206 return n

207

208 # ===========================

209 # Componente Principal: Fachada

210 # Descripción: Raíz del modelo jerárquico. Ensambla la

estructura de la casa ,

211 # la puerta y múltiples instancias de ventanas en posiciones

específicas.

212 # ===========================

213 func Fachada () -> Node2D:

214 # Definición de transformaciones para posicionar elementos

215 var tra1 = Transform2D ().translated(Vector2 (0.13, 0.13))

216 var tra2 = Transform2D ().translated(Vector2 (0.00, 0.43))

217 var tra3 = Transform2D ().translated(Vector2 (0.43, 0.00))

218

219 var n = Node2D.new()

220

221 # 1. Estructura base de la casa

222 n.add_child(CrearMeshInstance2D(casa , tr_identidad))

223

224 # 2. Puerta principal

Informática Gráfica Ismael Sallami Moreno

1.1 Sesión 2 25

225 n.add_child(TransformaNode2D(InstPuerta (), tr_identidad))

226

227 # 3. Ventana inferior izquierda

228 n.add_child(TransformaNode2D(InstVentana (), tra1))

229

230 # 4. Ventana superior izquierda (tra1 + tra2)

231 n.add_child(TransformaNode2D(InstVentana (), tra1 * tra2))

232

233 # 5. Ventana superior derecha (tra1 + tra2 + tra3)

234 n.add_child(TransformaNode2D(InstVentana (), tra1 * tra2 * tra3

))

235

236 return n

237

238

239 # ===========================

240 # FUNCIONES EXTRA PARA EJERCICIOS ESPECÍFICOS

241 # ===========================

242

243 # ===========================

244 # Helper Local para Rellenos (PRIMITIVE_TRIANGLES)

245 # Necesario porque 'funcionesauxiliarest5.CrearArrayMesh ' usa

LINE_STRIP.

246 # ===========================

247

248 func _crear_malla_rellena(v: PackedVector2Array) -> ArrayMesh:

249 var tablas: Array = []

250 tablas.resize(Mesh.ARRAY_MAX)

251 tablas[Mesh.ARRAY_VERTEX] = v

252 var am: ArrayMesh = ArrayMesh.new()

253 # Aquí usamos TRIANGLES en lugar de LINE_STRIP

254 am.add_surface_from_arrays(Mesh.PRIMITIVE_TRIANGLES , tablas)

255 return am

256

257 # ===========================

258 # Helper Local para Líneas por pares (PRIMITIVE_LINES)

259 # Necesario para dibujar líneas discontinuas o saltando vértices

.

260 # ===========================

261 func _crear_malla_lineas_pares(v: PackedVector2Array) ->

ArrayMesh:

262 var tablas: Array = []

263 tablas.resize(Mesh.ARRAY_MAX)

264 tablas[Mesh.ARRAY_VERTEX] = v

265 var am: ArrayMesh = ArrayMesh.new()

266 # Usamos LINES en lugar de LINE_STRIP

267 am.add_surface_from_arrays(Mesh.PRIMITIVE_LINES , tablas)

268 return am
� �
Informática Gráfica Ismael Sallami Moreno

1.1 Sesión 2 26

Puede ser que se usasen de otros ficheros, pero estos son los principales. De todas formas, si no se
incluye la implementación de algún método se sobreentiende.

Ejercicio 1.1.1

Polígono regular relleno de color plano
Implementa un nodo de tipo MeshInstance2D con una malla (no indexada) para un polígono
regular de n lados relleno de color naranja plano (RGB(1.0, 0.7, 0.0)), con radio r y centro en
el origen.
El polígono estará formado por n triángulos, cada uno con un vértice en el centro y los otros
dos en el contorno.
Los valores de n y r se declaran como dos constantes de GDScript (const), como se indica a
continuación:

const n: int = 8

const r: float = 0.8

Los valores de estas constantes se podrán cambiar sin tocar nada del resto del script.

Solución 1.1.1. Solución al problema 2.1:

� �
1 # Problema 2.1:

2 # Implementa un nodo de tipo MeshInstance con

3 # una malla (no indexada) para un polígono regular

4 # de n lados relleno de color naranja plano (RGB

5 # (1.0, 0.7, 0.0)), con radio r y centro en el origen (ver

6 # figura).

7 # El polígono estará formado por n triángulos , cada uno

8 # con un vértice en el centro y los otros dos en el

9 # contorno. Los valores de n y r de declaran como dos

10 # constantes de GDScript (const), como se indica aquí:

11 # const n : int = 8

12 # const r : float = 0.8

13 # Los valores de estas constantes se podrán cambiar sin

14 # tocar nada del resto del script.

15

16 extends MeshInstance2D # <-- IMPORTANTE

17

18 const n: int = 8

19 const r: float = 0.8

20

21 func _ready ():

Informática Gráfica Ismael Sallami Moreno

1.1 Sesión 2 27

22 var vertices = PackedVector2Array ()

23

24 var center = Vector2(0, 0)

25

26 var angle_step = TAU / n

27

28 for i in range(n):

29 var angle1 = i * angle_step

30 var angle2 = (i + 1) * angle_step

31

32 var p1 = Vector2(r * cos(angle1), r * sin(angle1))

33 var p2 = Vector2(r * cos(angle2), r * sin(angle2))

34

35 vertices.push_back(center)

36 vertices.push_back(p1)

37 vertices.push_back(p2)

38

39 var tablas = []

40

41 tablas.resize(Mesh.ARRAY_MAX)

42 tablas[Mesh.ARRAY_VERTEX] = vertices

43

44 mesh = ArrayMesh.new()

45 mesh.add_surface_from_arrays(Mesh.PRIMITIVE_TRIANGLES , tablas)

46

47 modulate = Color (1.0, 0.7, 0.0)
� �
Ejercicio 1.1.2

Polígono regular relleno con gradaciones
Crea otro Node2D, y asígnale un script para visualizar el mismo polígono regular que antes
(también con una malla no indexada), solo que ahora debes asignar colores a los vértices para
que los triángulos aparezcan con una graduación en tonos de gris como en la figura.
Cada triángulo que forma el polígono regular será blanco en el vértice del centro, gris claro en
otro vértice del borde y gris oscuro en el tercero.
Responde razonadamente a esta cuestión: ¿cuántos vértices debe tener la tabla de vértices?

Blanco Gris Claro

Gris Oscuro

Solución 1.1.2. Solución al problema 2.2:

� �
Informática Gráfica Ismael Sallami Moreno

1.1 Sesión 2 28

1 # Problema 2.2:

2 # Crea otro Node2D , y asígnale un script para

3 # visualizar el mismo polígono regular que antes

4 # (también con una malla no indexada), solo que

5 # ahora debes asignar colores a los vértices para

6 # que los triángulos aparezcan con una gradua7

7 # ción en tonos de gris como en la figura. Cada

8 # triángulo que forma el polígono regular será

9 # blanco en el vértice del centro , gris claro en

10 # otro y gris oscuro en el tercero.

11 # Responde razonadamente a esta cuestión:

12 # ¿ cuantos vértices debe tener la tabla de vér7

13 # tices ?

14

15 extends MeshInstance2D

16

17 const n: int = 8

18 const r: float = 0.8

19

20 func _ready ():

21 # 1. Creamos arrays para vértices Y para colores

22 var vertices = PackedVector2Array ()

23 var colors = PackedColorArray ()

24

25 var center_pos = Vector2(0, 0)

26 var angle_step = TAU / n

27

28 # Definimos los colores según pide el enunciado [cite: 2422]

29 var c_center = Color (1.0, 1.0, 1.0) # Blanco (Centro)

30 var c_light = Color (0.8, 0.8, 0.8) # Gris Claro (Vértice 1)

31 var c_dark = Color (0.2, 0.2, 0.2) # Gris Oscuro (Vértice

2)

32

33 for i in range(n):

34 var angle1 = i * angle_step

35 var angle2 = (i + 1) * angle_step

36

37 # Calculamos posiciones del borde

38 var p1 = Vector2(r * cos(angle1), r * sin(angle1))

39 var p2 = Vector2(r * cos(angle2), r * sin(angle2))

40

41 # --- AÑADIMOS VÉRTICES (Topología Triángulos) ---

42 vertices.push_back(center_pos)

43 vertices.push_back(p1)

44 vertices.push_back(p2)

45

46 # --- AÑADIMOS COLORES (En el mismo orden estricto) ---

47 colors.push_back(c_center)

Informática Gráfica Ismael Sallami Moreno

1.1 Sesión 2 29

48 colors.push_back(c_light)

49 colors.push_back(c_dark)

50

51 # 2. Preparamos las tablas (SOA - Structure of Arrays)

52 var tablas = []

53 tablas.resize(Mesh.ARRAY_MAX)

54 tablas[Mesh.ARRAY_VERTEX] = ver

55

56 # 3. Generamos la malla

57 mesh = ArrayMesh.new()

58 mesh.add_surface_from_arrays(Mesh.PRIMITIVE_TRIANGLES ,

tablas)

59

60 # NOTA: Ya no usamos 'modulate ' porque los colores vienen

dentro de la malla.
� �
Para ver cuantos vértices tiene la tabla de vértices, hay que tener en cuenta que cada triángulo
tiene 3 vértices, y como hay n triángulos, la tabla de vértices debe tener 3n vértices. Por lo tanto,
la respuesta es 3n. Siendon n = 8, la tabla de vértices tiene 24 vértices.

Ejercicio 1.1.3

Repite los dos problemas anteriores (2.1 y 2.2), con los mismos requerimientos, pero ahora
usando mallas indexadas, de forma que el número de vértices e índices sea mínimo.
Responde razonadamente a estas cuestiones:

– ¿Cuántos vértices debe tener ahora la tabla de vértices en cada caso?
– ¿Y cuántos índices debe haber?

Solución 1.1.3. Solución al problema 2.3:

� �
1 extends MeshInstance2D

2 const n: int = 8

3 const r: float = 0.8

4 const activate_2_1: bool = true

5

6 func _ready ():

7 if activate_2_1:

8 var vertices = PackedVector2Array ()

9 var indices = PackedInt32Array ()

10

11 var center = Vector2(0, 0)

12 var angle_step = TAU / n

13

14 # --- 1. GENERACIÓN DE VÉRTICES (TABLA DE VÉRTICES) ---

15 # Añadimos el centro (Índice 0)

16 vertices.push_back(center)

17

18 # Añadimos los puntos del perímetro (Índices 1 a n)

Informática Gráfica Ismael Sallami Moreno

1.1 Sesión 2 30

19 for i in range(n):

20 var angle = i * angle_step

21 var p = Vector2(cos(angle), sin(angle)) * r

22 vertices.push_back(p)

23

24 # --- 2. GENERACIÓN DE ÍNDICES (TABLA DE TRIÁNGULOS) ---

25 # Conectamos los vértices ya existentes

26 for i in range(n):

27 # El centro siempre es el índice 0

28 var idx_center = 0

29

30 # Vértice actual del perímetro (empiezan en el í

ndice 1)

31 var idx_current = i + 1

32

33 # Siguiente vértice. Usamos módulo (%) para cerrar

el círculo

34 # (Si estamos en el último , el siguiente debe ser el

1)

35 var idx_next = (i + 1) % n + 1

36

37 # Definimos el triángulo

38 indices.push_back(idx_center)

39 indices.push_back(idx_current)

40 indices.push_back(idx_next)

41

42 # --- 3. CREACIÓN DE LA MALLA ---

43 var tablas = []

44 tablas.resize(Mesh.ARRAY_MAX)

45 tablas[Mesh.ARRAY_VERTEX] = vertices

46 tablas[Mesh.ARRAY_INDEX] = indices # ¡Ahora usamos í

ndices!

47

48 mesh = ArrayMesh.new()

49 mesh.add_surface_from_arrays(Mesh.PRIMITIVE_TRIANGLES ,

tablas)

50

51 # Color plano para toda la malla

52 modulate = Color (1.0, 0.7, 0.0)

53 else:

54 var vertices = PackedVector2Array ()

55 var colors = PackedColorArray ()

56 var indices = PackedInt32Array ()

57

58 var angle_step = TAU / n

59

60 # Colores definidos

61 var c_center = Color (1.0, 1.0, 1.0) # Blanco

Informática Gráfica Ismael Sallami Moreno

1.1 Sesión 2 31

62 var c_light = Color (0.8, 0.8, 0.8) # Gris Claro (Inicio

arco)

63 var c_dark = Color (0.2, 0.2, 0.2) # Gris Oscuro (Fin

arco)

64

65 # --- 1. VÉRTICES Y COLORES ---

66

67 # Vértice 0: El Centro (Compartido por todos)

68 vertices.push_back(Vector2 (0,0))

69 colors.push_back(c_center)

70

71 # Vértices del perímetro (No se pueden compartir entre

triángulos vecinos)

72 for i in range(n):

73 var angle1 = i * angle_step

74 var angle2 = (i + 1) * angle_step

75

76 var p1 = Vector2(cos(angle1), sin(angle1)) * r

77 var p2 = Vector2(cos(angle2), sin(angle2)) * r

78

79 # Para cada triángulo , añadimos sus dos vértices del

borde específicos

80 vertices.push_back(p1) # Vértice 'Light ' de este tri

ángulo

81 colors.push_back(c_light)

82

83 vertices.push_back(p2) # Vértice 'Dark ' de este triá

ngulo

84 colors.push_back(c_dark)

85

86 # --- 2. ÍNDICES ---

87 for i in range(n):

88 # El centro siempre es 0

89 # Los vértices del perímetro están agrupados de 2 en

2 a partir del índice 1

90 # Triángulo 0 usa índices: 1 y 2

91 # Triángulo 1 usa índices: 3 y 4...

92 var base_idx = 1 + (i * 2)

93

94 indices.push_back (0) # Centro

95 indices.push_back(base_idx) # Light

96 indices.push_back(base_idx + 1) # Dark

97

98 # --- 3. MALLA ---

99 var tablas = []

100 tablas.resize(Mesh.ARRAY_MAX)

101 tablas[Mesh.ARRAY_VERTEX] = vertices

102 tablas[Mesh.ARRAY_COLOR] = colors

Informática Gráfica Ismael Sallami Moreno

1.1 Sesión 2 32

103 tablas[Mesh.ARRAY_INDEX] = indices

104

105 mesh = ArrayMesh.new()

106 mesh.add_surface_from_arrays(Mesh.PRIMITIVE_TRIANGLES ,

tablas)
� �
Ejercicio 1.1.4

Aristas del polígono regular
Crea un nuevo nodo MeshInstance2D de forma que ahora veamos simplemente las aristas
del contorno del polígono regular descrito en los anteriores problemas. En la figura se ve el
resultado para n = 16 y el mismo radio.
Considera dos casos:

1) Usando una malla no indexada.
2) Usando una malla indexada.

Solución 1.1.4. Solución al problema 2.4:

� �
1 extends MeshInstance2D

2

3 # Problema 2.4:

4 # Crea un nuevo nodo MeshInstance2D de for7

5 # ma que ahora veamos simplemente las aristas

6 # del polígono regular descrito en los anteriores

7 # problemas. En la figura se ve para n a 16 y el

8 # mismo radio.

9 # Considera dos casos:

10 # - Usando una malla no indexada.

11 # - Usando una malla indexadas.

12

13 var no_indexado: bool = false

14 const n: int = 16 # Actualizado a 16 como pide el enunciado

15 const r: float = 0.8

16 var centre: Vector2 = Vector2(0, 0)

17

18 func _ready ():

19 if no_indexado:

Informática Gráfica Ismael Sallami Moreno

1.1 Sesión 2 33

20 var vertices = PackedVector2Array ()

21 var angle_step = TAU / n # TAU es 2*PI

22

23 # Generamos pares de vértices para cada línea

24 for i in range(n):

25 var angle_current = i * angle_step

26 var angle_next = (i + 1) * angle_step

27

28 # Calculamos los dos extremos del segmento actual

29 var p1 = Vector2(cos(angle_current), sin(angle_current)) *

r

30 var p2 = Vector2(cos(angle_next), sin(angle_next)) * r

31

32 # Añadimos ambos al array.

33 # Como NO es indexada , repetimos vértices geométricos.

34 vertices.push_back(centre)

35 vertices.push_back(p1)

36

37 vertices.push_back(p1)

38 vertices.push_back(p2)

39

40

41 # Preparamos la estructura SOA

42 var tablas = []

43 tablas.resize(Mesh.ARRAY_MAX)

44 tablas[Mesh.ARRAY_VERTEX] = vertices

45

46 mesh = ArrayMesh.new()

47 # IMPORTANTE: Cambiamos el tipo de primitiva a LÍNEAS

48 mesh.add_surface_from_arrays(Mesh.PRIMITIVE_LINES , tablas)

49

50 # Color para las líneas (ej. Verde o Rojo)

51 modulate = Color (0.0, 1.0, 0.0)

52 else:

53 var vertices = PackedVector2Array ()

54 var indices = PackedInt32Array ()

55 var angle_step = TAU / n

56

57 # 1. TABLA DE VÉRTICES

58 # Primero añadimos el CENTRO (Índice 0)

59 vertices.push_back(centre)

60

61 # Luego los puntos del perímetro (Índices 1 a n)

62 for i in range(n):

63 var angle = i * angle_step

64 var p = Vector2(cos(angle), sin(angle)) * r

65 vertices.push_back(p)

66

Informática Gráfica Ismael Sallami Moreno

1.1 Sesión 2 34

67 # 2. TABLA DE ÍNDICES

68 for i in range(n):

69 # El centro es el índice 0

70 var idx_center = 0

71 # Vértice actual del borde (offset +1 porque el 0 es el

centro)

72 var idx_current = i + 1

73 # Siguiente vértice (con módulo para cerrar el círculo)

74 var idx_next = (i + 1) % n + 1

75

76 # --- DEFINIMOS LAS LÍNEAS ---

77

78 # Línea 1: Radio (Conecta Centro con Actual)

79 indices.push_back(idx_center)

80 indices.push_back(idx_current)

81

82 # Línea 2: Borde (Conecta Actual con Siguiente)

83 indices.push_back(idx_current)

84 indices.push_back(idx_next)

85

86 # 3. CREACIÓN DE LA MALLA

87 var tablas = []

88 tablas.resize(Mesh.ARRAY_MAX)

89 tablas[Mesh.ARRAY_VERTEX] = vertices

90 tablas[Mesh.ARRAY_INDEX] = indices # ¡Asignamos los índices!

91

92 mesh = ArrayMesh.new()

93 mesh.add_surface_from_arrays(Mesh.PRIMITIVE_LINES , tablas)

94

95 modulate = Color (1.0, 0.0, 0.0) # Rojo
� �

Informática Gráfica Ismael Sallami Moreno

1.1 Sesión 2 35

Ejercicio 1.1.5

Generación de malla con segmentos de normales
Crea un script global (autoload) con una función que genere un objeto de tipo MeshInstance3D

con una malla no indexada que contenga los segmentos representando las normales de una
malla dada. La función tendrá la siguiente declaración:
func genSegNormales(

verts: PackedVector3Array,

norms: PackedVector3Array,

lon: float,

color: Color

) -> MeshInstance3D:

Donde verts es la tabla de vértices de la malla original, norms la tabla de normales, lon la
longitud de los segmentos y color el color de los segmentos. Usa el tipo de primitiva líneas
(PRIMITIVE_LINES), y asegúrate de que a los segmentos no les afecta la iluminación.
Continuación (Uso): Una vez tengas la función disponible, úsala en la función _ready de
alguna malla (por ejemplo, el Donut o los cubos de la práctica), para añadir al objeto un nodo
hijo con la malla de segmentos creada por la función.
Puedes capturar el evento de pulsación de la tecla N del objeto para activar y desactivar la
visualización de las normales en ese objeto. Para ello, usa un valor lógico y el atributo de
visibilidad de la malla de segmentos.

Esquema conceptual: Superficie y Normales

Solución 1.1.5. Solución al problema 2.5: Se encuentra en el fichero Global.gd del autoload, cargando
anteriormente. De todas formas, se añade aquí la función para que se vea más fácilmente:

� �
1 func genSegNormales(verts , norms : PackedVector3Array , lon :

float , color : Color) -> MeshInstance3D:

2 var line_verts = PackedVector3Array ()

3 var line_colors = PackedColorArray ()

4

5 for i in range(verts.size()):

6 var origen = verts[i]

7 var destino = origen + norms[i] * lon

8

9 line_verts.push_back(origen)

10 line_verts.push_back(destino)

11

12 line_colors.push_back(color)

13 line_colors.push_back(color)

14

Informática Gráfica Ismael Sallami Moreno

1.2 Sesión 3 36

15 var arrays = []

16 arrays.resize(Mesh.ARRAY_MAX)

17 arrays[Mesh.ARRAY_VERTEX] = line_verts

18 arrays[Mesh.ARRAY_COLOR] = line_colors

19

20 var arr_mesh = ArrayMesh.new()

21 arr_mesh.add_surface_from_arrays(Mesh.PRIMITIVE_LINES ,

arrays)

22

23 var material = StandardMaterial3D.new()

24 material.shading_mode = BaseMaterial3D.SHADING_MODE_UNSHADED

25 material.vertex_color_use_as_albedo = true

26

27 var mi = MeshInstance3D.new()

28 mi.mesh = arr_mesh

29 mi.material_override = material

30

31 return mi

32
� �

1.2 Sesión 3
Ejercicio 1.2.1

Demuestra que efectivamente el producto escalar de dos vectores se puede calcular (usando
sus coordenadas en cualquier marco cartesiano) como la suma del producto componente a
componente. Usa las propiedades que definen dicho producto escalar.

Solución 1.2.1. Hipótesis y Datos de Partida:

1) Definimos dos vectores u⃗ y v⃗ en un espacio vectorial V .
2) Trabajamos en un marco cartesiano, lo que implica una base ortonormal {êi}.
3) Las propiedades de esta base especial son:

– êi · êi = 1 (son unitarios).
– êi · êj = 0 si i ̸= j (son perpendiculares).

4) Expresamos los vectores mediante sus coordenadas en esta base:

u⃗ =
n∑

i=1
aiêi

v⃗ =
n∑

j=1
bj êj

Demostración Paso a Paso:

Informática Gráfica Ismael Sallami Moreno

1.2 Sesión 3 37

1) Planteamiento del producto:

u⃗ · v⃗ =
(

n∑
i=1

aiêi

)
·

 n∑
j=1

bj êj


2) Aplicación de la Propiedad Distributiva:

=
n∑

i=1

n∑
j=1

aibj(êi · êj)

3) Aplicación de la Propiedad Asociativa (Escalares): Los coeficientes ai y bj son reales,
así que pueden factorizarse fuera del producto escalar.

4) Aplicación de las Propiedades de la Base Ortonormal:
– Cuando i ̸= j, el término es 0.
– Cuando i = j, el término es 1.

Así, sólo sobreviven los términos con i = j:

u⃗ · v⃗ =
n∑

i=1
aibi

Conclusión: Queda demostrado que, en un marco cartesiano, el producto escalar es la suma de los
productos de las componentes homólogas.

Ejercicio 1.2.2

Demuestra que el producto vectorial de dos vectores se puede calcular usando sus coordenadas
en cualquier marco cartesiano según se ha indicado.

Solución 1.2.2. Hipótesis y Datos de Partida:

1) Trabajamos en 3D con la base especial {x̂, ŷ, ẑ}.
2) Propiedades definitorias del producto vectorial en esta base:

– x̂× ŷ = ẑ, ŷ × ẑ = x̂, ẑ × x̂ = ŷ (ciclo dextrógiro).
– Por la propiedad anticonmutativa, el orden inverso invierte el signo: ŷ × x̂ = −ẑ, etc.
– El producto de un vector por sí mismo es nulo: x̂× x̂ = 0⃗, etc.

3) Vectores definidos por coordenadas:

u⃗ = x0x̂ + y0ŷ + z0ẑ

v⃗ = x1x̂ + y1ŷ + z1ẑ

Demostración Paso a Paso:

1) Planteamiento:
u⃗× v⃗ = (x0x̂ + y0ŷ + z0ẑ)× (x1x̂ + y1ŷ + z1ẑ)

2) Expansión (Distributiva):

= x0x1(x̂× x̂) + x0y1(x̂× ŷ) + x0z1(x̂× ẑ)
+ y0x1(ŷ × x̂) + y0y1(ŷ × ŷ) + y0z1(ŷ × ẑ)
+ z0x1(ẑ × x̂) + z0y1(ẑ × ŷ) + z0z1(ẑ × ẑ)

Informática Gráfica Ismael Sallami Moreno

1.2 Sesión 3 38

3) Simplificación con Propiedades de la Base:

= 0 + x0y1ẑ + x0z1(−ŷ)
+ y0x1(−ẑ) + 0 + y0z1x̂

+ z0x1ŷ + z0y1(−x̂) + 0

4) Agrupación por componentes:

Componente x̂ : y0z1 − z0y1

Componente ŷ : z0x1 − x0z1

Componente ẑ : x0y1 − y0x1

u⃗× v⃗ = (y0z1 − z0y1)x̂ + (z0x1 − x0z1)ŷ + (x0y1 − y0x1)ẑ

Conclusión: El vector resultante en coordenadas es:

u⃗× v⃗ =

y0z1 − z0y1

z0x1 − x0z1

x0y1 − y0x1


Esto coincide exactamente con la definición matricial dada en el documento.

Ejercicio 1.2.3

Demuestra que el producto vectorial de dos vectores es perpendicular a cada uno de esos dos
vectores.

Solución 1.2.3. Datos de Partida:

1) Condición de perpendicularidad: Dos vectores son perpendiculares si su producto escalar es
0.

2) Usaremos los resultados demostrados en los Problemas 3.1 y 3.2.

Demostración (para u⃗):

Queremos probar que u⃗ · w⃗ = 0.

Sea w⃗ = u⃗× v⃗. Sus componentes son (del Prob 3.2):

wx = y0z1 − z0y1

wy = z0x1 − x0z1

wz = x0y1 − y0x1

Calculamos el producto escalar u⃗ · w⃗ usando la fórmula de componentes (del Prob 3.1):

u⃗ · w⃗ = x0wx + y0wy + z0wz

Sustituyendo los componentes de w⃗:

= x0(y0z1 − z0y1) + y0(z0x1 − x0z1) + z0(x0y1 − y0x1)
= x0y0z1 − x0z0y1 + y0z0x1 − y0x0z1 + z0x0y1 − z0y0x1

Informática Gráfica Ismael Sallami Moreno

1.2 Sesión 3 39

Reordenamos los términos para ver las cancelaciones:

– x0y0z1 se cancela con −y0x0z1 (son idénticos, el orden de factores reales no altera el producto).
– −x0z0y1 se cancela con z0x0y1.
– y0z0x1 se cancela con −z0y0x1.

Resultado:
u⃗ · w⃗ = 0

(Nota: La demostración para v⃗ es análoga, sustituyendo las coordenadas de v⃗ en el producto escalar,
y también resultará en 0).

Conclusión: Hemos demostrado algebraicamente la propiedad geométrica fundamental mencionada
en la página 30: el producto vectorial genera una dirección perpendicular al plano formado por los
dos vectores originales.

Ejercicio 1.2.4

Demuestra que el producto escalar de vectores en 2D es invariante por rotación. Es decir, que
para cualquier ángulo θ y vectores u⃗ y v⃗ se cumple:

u⃗ · v⃗ = Rθ(u⃗) ·Rθ(v⃗)

Se requiere realizar la demostración utilizando las coordenadas de los vectores en un marco
cartesiano arbitrario.

Solución 1.2.4. Para demostrar la invariancia del producto escalar bajo una transformación de
rotación en el espacio euclídeo bidimensional (R2), procederemos algebraicamente definiendo los
componentes de los vectores y la matriz de transformación correspondiente.

Sean u⃗ y v⃗ dos vectores libres en R2 definidos por sus componentes en un marco cartesiano:

u⃗ =
(

ux

uy

)
, v⃗ =

(
vx

vy

)

La definición estándar del producto escalar (producto punto) en coordenadas cartesianas viene
dada por:

u⃗ · v⃗ = uxvx + uyvy (1.1)

Sea Rθ la transformación de rotación por un ángulo θ alrededor del origen. La matriz asociada a
esta transformación en 2D, MR, se define como:

MR =
(

cos θ − sin θ

sin θ cos θ

)

Aplicamos la transformación lineal a los vectores u⃗ y v⃗ mediante la multiplicación matricial:

1. Para el vector u⃗′ = Rθ(u⃗):

u⃗′ =
(

cos θ − sin θ

sin θ cos θ

)(
ux

uy

)
=
(

ux cos θ − uy sin θ

ux sin θ + uy cos θ

)

Denotamos las componentes transformadas como u′
x = ux cos θ − uy sin θ y u′

y = ux sin θ + uy cos θ.

Informática Gráfica Ismael Sallami Moreno

1.2 Sesión 3 40

2. Para el vector v⃗′ = Rθ(v⃗):

v⃗′ =
(

cos θ − sin θ

sin θ cos θ

)(
vx

vy

)
=
(

vx cos θ − vy sin θ

vx sin θ + vy cos θ

)

Denotamos las componentes transformadas como v′
x = vx cos θ − vy sin θ y v′

y = vx sin θ + vy cos θ.

Procedemos ahora a calcular el producto escalar de los vectores transformados, Rθ(u⃗) · Rθ(v⃗) =
u′

xv′
x + u′

yv′
y:

Rθ(u⃗) ·Rθ(v⃗) = (ux cos θ − uy sin θ)(vx cos θ − vy sin θ)
+ (ux sin θ + uy cos θ)(vx sin θ + vy cos θ)

Expandimos los términos algebraicos:

Rθ(u⃗) ·Rθ(v⃗) = (uxvx cos2 θ − uxvy cos θ sin θ − uyvx sin θ cos θ + uyvy sin2 θ)
+ (uxvx sin2 θ + uxvy sin θ cos θ + uyvx cos θ sin θ + uyvy cos2 θ)

Agrupamos los términos comunes en función de los coeficientes de los vectores originales:

Rθ(u⃗) ·Rθ(v⃗) = uxvx(cos2 θ + sin2 θ)
+ uyvy(sin2 θ + cos2 θ)
+ uxvy(− cos θ sin θ + sin θ cos θ)
+ uyvx(− sin θ cos θ + cos θ sin θ)

Aplicamos la identidad trigonométrica fundamental cos2 θ+sin2 θ = 1 y observamos que los términos
cruzados se cancelan:

Rθ(u⃗) ·Rθ(v⃗) = uxvx(1) + uyvy(1) + uxvy(0) + uyvx(0)
= uxvx + uyvy

Comparando este resultado con la definición inicial en la Ecuación (1), concluimos que:

Rθ(u⃗) ·Rθ(v⃗) = u⃗ · v⃗

Q.E.D.

Informática Gráfica Ismael Sallami Moreno

1.2 Sesión 3 41

Ejercicio 1.2.5

Demuestra que en 2D las rotaciones no modifican la longitud de un vector (isometría). Es
decir, que para cualquier ángulo θ y vector v⃗, se cumple:

∥Rθ(v⃗)∥ = ∥v⃗∥

Solución 1.2.5. Para demostrar que la rotación es una transformación isométrica que preserva la
norma (longitud) de los vectores, utilizaremos la relación fundamental entre la norma euclídea y el
producto escalar.

La definición de la norma de un vector v⃗ en función del producto escalar es:

∥v⃗∥ =
√

v⃗ · v⃗

Elevando al cuadrado ambos lados, tenemos:

∥v⃗∥2 = v⃗ · v⃗ (1.2)

Consideremos ahora la norma al cuadrado del vector transformado Rθ(v⃗):

∥Rθ(v⃗)∥2 = Rθ(v⃗) ·Rθ(v⃗)

Basándonos en la propiedad demostrada en el Ejercicio 3.4 (invariancia del producto escalar bajo
rotación), sabemos que para cualesquiera vectores a⃗ y b⃗, se cumple a⃗ · b⃗ = Rθ (⃗a) ·Rθ (⃗b).

En este caso particular, hacemos a⃗ = v⃗ y b⃗ = v⃗. Aplicando la propiedad de invariancia:

Rθ(v⃗) ·Rθ(v⃗) = v⃗ · v⃗

Sustituyendo esto en la expresión de la norma transformada:

∥Rθ(v⃗)∥2 = v⃗ · v⃗

Dado que v⃗ · v⃗ = ∥v⃗∥2 según la Ecuación (2), obtenemos:

∥Rθ(v⃗)∥2 = ∥v⃗∥2

Tomando la raíz cuadrada positiva en ambos lados (dado que la norma es una magnitud no negativa):

∥Rθ(v⃗)∥ = ∥v⃗∥

Por lo tanto, queda demostrado que la aplicación de una matriz de rotación Rθ no altera la longitud
del vector, confirmando que las rotaciones son isometrías.

Informática Gráfica Ismael Sallami Moreno

1.2 Sesión 3 42

Ejercicio 1.2.6

Demuestra que si rotamos en 2D un vector +90 grados (π/2) o -90 grados (−π/2), obtenemos
otro vector perpendicular al original. Es decir, si ∥θ∥ = π/2, entonces:

v⃗ ·Rθ(v⃗) = 0

Solución 1.2.6. Para demostrar la perpendicularidad entre un vector original v⃗ y su versión rotada
±90◦, utilizaremos la definición algebraica del producto escalar y la matriz de rotación específica
para estos ángulos.

Sea v⃗ un vector arbitrario en R2:

v⃗ =
(

vx

vy

)

La matriz de rotación general Rθ es:

Rθ =
(

cos θ − sin θ

sin θ cos θ

)

Analizaremos los dos casos solicitados: θ = π/2 y θ = −π/2.

Caso 1: Rotación de +π/2 (90◦) Sustituimos θ = π/2 en la matriz de rotación, sabiendo que
cos(π/2) = 0 y sin(π/2) = 1:

Rπ/2 =
(

0 −1
1 0

)

Calculamos el vector transformado v⃗′ = Rπ/2(v⃗):

v⃗′ =
(

0 −1
1 0

)(
vx

vy

)
=
(
−vy

vx

)

Ahora calculamos el producto escalar entre el vector original y el transformado:

v⃗ · v⃗′ = vx(−vy) + vy(vx) = −vxvy + vxvy = 0

Caso 2: Rotación de −π/2 (−90◦) Sustituimos θ = −π/2 en la matriz, sabiendo que cos(−π/2) =
0 y sin(−π/2) = −1:

R−π/2 =
(

0 1
−1 0

)

Calculamos el vector transformado v⃗′′ = R−π/2(v⃗):

v⃗′′ =
(

0 1
−1 0

)(
vx

vy

)
=
(

vy

−vx

)

Calculamos el producto escalar:

v⃗ · v⃗′′ = vx(vy) + vy(−vx) = vxvy − vxvy = 0

Informática Gráfica Ismael Sallami Moreno

1.2 Sesión 3 43

Conclusión: En ambos casos, el producto escalar es nulo. Dado que a⃗ · b⃗ = 0 ⇐⇒ a⃗ ⊥ b⃗ (para
vectores no nulos), queda demostrado que el vector rotado ±90◦ es perpendicular al original.

Ejercicio 1.2.7

Demuestra que una matriz de rotación en 2D es siempre ortonormal, independientemente del
ángulo. Esto implica demostrar que: 1. Sus filas son ortogonales entre sí (perpendiculares). 2.
Sus columnas son ortogonales entre sí. 3. Cada fila y cada columna tiene norma (longitud)
igual a 1.

Solución 1.2.7. Una matriz M es ortonormal (u ortogonal) si cumple que MT M = I, lo cual
equivale a que sus filas y columnas formen una base ortonormal. Analizaremos las propiedades de
filas y columnas de la matriz de rotación general.

Sea Rθ la matriz de rotación:

Rθ =
(

cos θ − sin θ

sin θ cos θ

)

Denotamos las filas como vectores r⃗1, r⃗2 y las columnas como c⃗1, c⃗2:

r⃗1 = (cos θ,− sin θ), r⃗2 = (sin θ, cos θ)

c⃗1 =
(

cos θ

sin θ

)
, c⃗2 =

(
− sin θ

cos θ

)

1. Ortogonalidad de las filas: Calculamos el producto escalar r⃗1 · r⃗2:

r⃗1 · r⃗2 = (cos θ)(sin θ) + (− sin θ)(cos θ) = sin θ cos θ − sin θ cos θ = 0

Las filas son perpendiculares.

2. Normalidad de las filas (Longitud unitaria): Calculamos la norma al cuadrado de cada fila
usando la identidad cos2 θ + sin2 θ = 1:

∥r⃗1∥2 = (cos θ)2 + (− sin θ)2 = cos2 θ + sin2 θ = 1 =⇒ ∥r⃗1∥ = 1

∥r⃗2∥2 = (sin θ)2 + (cos θ)2 = sin2 θ + cos2 θ = 1 =⇒ ∥r⃗2∥ = 1

3. Ortogonalidad de las columnas: Calculamos el producto escalar c⃗1 · c⃗2:

c⃗1 · c⃗2 = (cos θ)(− sin θ) + (sin θ)(cos θ) = − sin θ cos θ + sin θ cos θ = 0

Las columnas son perpendiculares.

4. Normalidad de las columnas:

∥c⃗1∥2 = cos2 θ + sin2 θ = 1 =⇒ ∥c⃗1∥ = 1

∥c⃗2∥2 = (− sin θ)2 + cos2 θ = sin2 θ + cos2 θ = 1 =⇒ ∥c⃗2∥ = 1

Conclusión: Dado que tanto las filas como las columnas son vectores unitarios y ortogonales entre
sí para cualquier valor de θ, la matriz de rotación Rθ es siempre una matriz ortonormal.

Informática Gráfica Ismael Sallami Moreno

1.2 Sesión 3 44

Ejercicio 1.2.8

Demuestra que, en 2D, el producto de una matriz de rotación y una de escalado no es
conmutativo en general, excepto si el escalado es uniforme.

Solución 1.2.8. Para analizar la conmutatividad entre la rotación y el escalado, definiremos las
matrices correspondientes en el espacio bidimensional. Consideraremos las matrices de 2× 2, dado
que ambas son transformaciones lineales y no requieren necesariamente coordenadas homogéneas
para demostrar esta propiedad (aunque el resultado es idéntico en 3× 3 con la última fila/columna
canónica).

Sean las matrices de rotación Rθ y de escalado S(sx, sy):

Rθ =
(

cos θ − sin θ

sin θ cos θ

)
, S =

(
sx 0
0 sy

)

Calculamos el producto Rθ · S (aplicar escalado y luego rotación):

Rθ · S =
(

cos θ − sin θ

sin θ cos θ

)(
sx 0
0 sy

)
=
(

sx cos θ −sy sin θ

sx sin θ sy cos θ

)

Calculamos el producto S ·Rθ (aplicar rotación y luego escalado):

S ·Rθ =
(

sx 0
0 sy

)(
cos θ − sin θ

sin θ cos θ

)
=
(

sx cos θ −sx sin θ

sy sin θ sy cos θ

)

Para que las matrices conmuten, es decir, Rθ · S = S · Rθ, sus componentes deben ser idénticos
término a término. Comparamos los términos fuera de la diagonal principal:

1) Elemento (1, 2): −sy sin θ = −sx sin θ =⇒ (sx − sy) sin θ = 0
2) Elemento (2, 1): sx sin θ = sy sin θ =⇒ (sx − sy) sin θ = 0

Para que la igualdad se cumpla para un ángulo de rotación general (sin θ ̸= 0), es condición necesaria
y suficiente que:

sx = sy

Conclusión: Si sx ≠ sy (escalado no uniforme), los productos matriciales son distintos, demostrando
que la operación no es conmutativa en general. Si sx = sy = s (escalado uniforme), la matriz
de escalado se convierte en sI (donde I es la identidad), la cual conmuta con cualquier matriz
cuadrada.

Ejercicio 1.2.9

Demuestra que en 2D, el producto de una matriz de rotación y otra de traslación (por un
vector no nulo) no es conmutativo.

Solución 1.2.9. Dado que la traslación es una transformación afín y no lineal, es imprescindi-
ble utilizar coordenadas homogéneas para representarla como una multiplicación matricial.
Trabajaremos con matrices de 3× 3.

Informática Gráfica Ismael Sallami Moreno

1.2 Sesión 3 45

Sea Rθ la matriz de rotación y Tt⃗ la matriz de traslación por un vector t⃗ = (tx, ty):

Rθ =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 , Tt⃗ =

1 0 tx

0 1 ty

0 0 1


Calculamos el producto Rθ · Tt⃗ (primero se traslada, luego se rota):

Rθ · Tt⃗ =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1


1 0 tx

0 1 ty

0 0 1

 =

cos θ − sin θ tx cos θ − ty sin θ

sin θ cos θ tx sin θ + ty cos θ

0 0 1


Geométricamente, esto rota el punto y también rota el vector de traslación aplicado.

Calculamos el producto Tt⃗ ·Rθ (primero se rota, luego se traslada):

Tt⃗ ·Rθ =

1 0 tx

0 1 ty

0 0 1


cos θ − sin θ 0

sin θ cos θ 0
0 0 1

 =

cos θ − sin θ tx

sin θ cos θ ty

0 0 1


Geométricamente, esto rota el punto alrededor del origen y luego aplica la traslación original sin
modificar.

Comparación: Observamos la tercera columna (la componente de traslación resultante) de ambas
matrices resultantes: tx cos θ − ty sin θ

tx sin θ + ty cos θ

1

 ̸=
tx

ty

1


Para que fuesen iguales en un caso general (θ ≠ 0), se requeriría que tx = 0 y ty = 0. Dado que el
enunciado especifica un vector de traslación no nulo, concluimos que las matrices son distintas.

Conclusión: El orden de las operaciones altera el resultado final: rotar y luego trasladar lleva
a una posición diferente que trasladar y luego rotar (donde el desplazamiento también sufre la
rotación). Por tanto, no son conmutativas.

Ejercicio 1.2.10

Demuestra que el producto escalar de vectores en 3D es invariante por rotaciones entorno a
los ejes cartesianos, y que estas tampoco modifican la longitud de un vector.

Solución 1.2.10. Para demostrar la invariancia del producto escalar en R3 bajo rotaciones cartesianas,
tomaremos sin pérdida de generalidad el caso de una rotación alrededor del eje Z por un ángulo θ.
El procedimiento es análogo para los ejes X e Y debido a la simetría cíclica de las coordenadas.

La matriz de rotación Rz,θ se define como:

Rz,θ =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1



Informática Gráfica Ismael Sallami Moreno

1.2 Sesión 3 46

Sean u⃗ = (ux, uy, uz) y v⃗ = (vx, vy, vz) dos vectores arbitrarios. El producto escalar original es:

u⃗ · v⃗ = uxvx + uyvy + uzvz (1.3)

Calculamos los vectores transformados u⃗′ = Rz,θ(u⃗) y v⃗′ = Rz,θ(v⃗):

u⃗′ =

ux cos θ − uy sin θ

ux sin θ + uy cos θ

uz

 , v⃗′ =

vx cos θ − vy sin θ

vx sin θ + vy cos θ

vz


Ahora calculamos el producto escalar de los vectores transformados:

u⃗′ · v⃗′ = (ux cos θ − uy sin θ)(vx cos θ − vy sin θ)
+ (ux sin θ + uy cos θ)(vx sin θ + vy cos θ)
+ uzvz

Expandiendo los términos correspondientes a las componentes x e y (idéntico al caso 2D):

= (uxvx cos2 θ − uxvy cos θ sin θ − uyvx sin θ cos θ + uyvy sin2 θ)
+ (uxvx sin2 θ + uxvy sin θ cos θ + uyvx cos θ sin θ + uyvy cos2 θ)
+ uzvz

Agrupando y simplificando usando sin2 θ + cos2 θ = 1:

u⃗′ · v⃗′ = uxvx(cos2 θ + sin2 θ) + uyvy(sin2 θ + cos2 θ) + uzvz

= uxvx + uyvy + uzvz

= u⃗ · v⃗

Invariancia de la longitud: Utilizando la relación ∥v⃗∥2 = v⃗ · v⃗ y la propiedad recién demostrada:

∥Rz,θ(v⃗)∥2 = Rz,θ(v⃗) ·Rz,θ(v⃗) = v⃗ · v⃗ = ∥v⃗∥2

Tomando la raíz cuadrada, concluimos que ∥Rz,θ(v⃗)∥ = ∥v⃗∥.

Ejercicio 1.2.11

Demuestra que el producto vectorial de dos vectores rota igual que lo hacen esos dos vectores.
Es decir, para cualesquiera vectores u⃗, v⃗ y un ángulo θ con eje ê, se cumple:

Rθ,ê(u⃗× v⃗) = Rθ,ê(u⃗)×Rθ,ê(v⃗)

Solución 1.2.11. Para esta demostración, consideraremos la rotación alrededor del eje Z (Rz,θ), ya
que la lógica es extensible a cualquier eje cartesiano por permutación de índices.

Informática Gráfica Ismael Sallami Moreno

1.2 Sesión 3 47

Definimos w⃗ = u⃗× v⃗. Sus componentes son:

w⃗ =

wx

wy

wz

 =

uyvz − uzvy

uzvx − uxvz

uxvy − uyvx


Parte 1: Rotación del producto vectorial original (Rz,θ(w⃗)) Aplicamos la matriz de rotación
al vector w⃗:

Rz,θ(w⃗) =

wx cos θ − wy sin θ

wx sin θ + wy cos θ

wz


Sustituyendo los componentes de w⃗:

Rz,θ(w⃗)x = (uyvz − uzvy) cos θ − (uzvx − uxvz) sin θ (1.4)

Rz,θ(w⃗)y = (uyvz − uzvy) sin θ + (uzvx − uxvz) cos θ (1.5)

Rz,θ(w⃗)z = uxvy − uyvx (1.6)

Parte 2: Producto vectorial de los vectores rotados (u⃗′× v⃗′) Sean u⃗′ = Rz,θ(u⃗) y v⃗′ = Rz,θ(v⃗).
Sus componentes son:

u⃗′ = (uxc− uys, uxs + uyc, uz)

v⃗′ = (vxc− vys, vxs + vyc, vz)

(donde c = cos θ, s = sin θ).

Calculamos la componente X de u⃗′ × v⃗′:

(u⃗′ × v⃗′)x = u′
yv′

z − u′
zv′

y

= (uxs + uyc)vz − uz(vxs + vyc)
= uxvzs + uyvzc− uzvxs− uzvyc

= c(uyvz − uzvy)− s(uzvx − uxvz)

Este resultado coincide exactamente con la Ecuación (1).

Calculamos la componente Y de u⃗′ × v⃗′:

(u⃗′ × v⃗′)y = u′
zv′

x − u′
xv′

z

= uz(vxc− vys)− (uxc− uys)vz

= uzvxc− uzvys− uxvzc + uyvzs

= s(uyvz − uzvy) + c(uzvx − uxvz)

Este resultado coincide exactamente con la Ecuación (2).

Calculamos la componente Z de u⃗′ × v⃗′:

(u⃗′ × v⃗′)z = u′
xv′

y − u′
yv′

x

= (uxc− uys)(vxs + vyc)− (uxs + uyc)(vxc− vys)

Informática Gráfica Ismael Sallami Moreno

1.2 Sesión 3 48

Desarrollando y simplificando:

= (uxvxcs + uxvyc2 − uyvxs2 − uyvysc)− (uxvxsc− uxvys2 + uyvxc2 − uyvycs)
= uxvy(c2 + s2)− uyvx(s2 + c2)
= uxvy − uyvx

Este resultado coincide con la Ecuación (3).

Conclusión: Dado que todas las componentes coinciden, queda demostrado que:

Rz,θ(u⃗× v⃗) = Rz,θ(u⃗)×Rz,θ(v⃗)

Ejercicio 1.2.12

Crea un script global (autoload) con una función llamada gancho (sin parámetros) que crea y
devuelve un objeto de la clase Mesh con una polilínea azul como la de la figura (los ejes se han
dibujado por claridad).
Crea en tu proyecto un nodo 2D de tipo MeshInstance2D y en _ready asígnale como malla
(propiedad mesh) el objeto resultado de llamar a gancho(), ponle un color azul (propiedad
modulate) y verifica que el gancho aparece en pantalla al ejecutar el proyecto.

X+

Y+

0 1
0

1

2

Solución 1.2.12. Solución al problema 3.12:

� �
1 # Problema 3.12:

2 # Crea un script global (autoload) con una función

3 # llamada gancho (sin parámetros) que crea y

4 # devuelve un objeto de la clase Mesh con una

5 # polilínea azul como la de la figura (los ejes se han

6 # dibujado por claridad).

7 # Crea en tu proyecto un nodo 2D de tipo

8 # MeshInstance2D y en _ready asígnale como

9 # malla (propiedad mesh) el objeto resultado de

10 # llamar a gancho (), ponle un color azul (propie7

11 # dad modulate) y verifica que el gancho aparece

12 # en pantalla al ejecutar el proyecto.

13 extends MeshInstance2D

14

Informática Gráfica Ismael Sallami Moreno

1.2 Sesión 3 49

15 func _ready ():

16 self.mesh = Global.gancho ()

17 self.modulate = Color (0,0,1)
� �
Además, añadimos el codigo de gancho que se encuentra en el script global:

� �
1 func gancho () -> ArrayMesh:

2 var vertices = PackedVector2Array ([

3 Vector2 (0,0),

4 Vector2 (1,0),

5 Vector2 (1,1),

6 Vector2 (0,1),

7 Vector2 (0,2)

8])

9

10 var arrays = []

11 arrays.resize(Mesh.ARRAY_MAX)

12 arrays[Mesh.ARRAY_VERTEX] = vertices

13

14 var mesh = ArrayMesh.new()

15 mesh.add_surface_from_arrays(Mesh.PRIMITIVE_LINE_STRIP ,

arrays)

16 return mesh

17
� �
Ejercicio 1.2.13

Crea un nodo 2D de tipo Node2D y llámalo Gancho_x4. En _ready, añádele cuatro nodos hijos
de tipo MeshInstance2D, cada uno de ellos con un malla creada con la función gancho del
problema anterior, pero con su transform modificada para que el objeto Gancho_x4 se vea
como en la figura (la rejilla y los ejes en rojo se han dibujado por claridad).

-3 -2 -1 0 1

-1

0

1

2

3

Solución 1.2.13. Solución al problema 3.13:

Informática Gráfica Ismael Sallami Moreno

1.2 Sesión 3 50

� �
1 extends Node2D

2

3 func _ready ():

4 var malla_gancho = Global.gancho ()

5

6 # Definimos el centro de rotación observado en la imagen

7 var centro_rotacion = Vector2(-1, 1)

8

9 # Creamos las 4 instancias

10 for i in range (4):

11 var instancia = MeshInstance2D.new()

12 instancia.mesh = malla_gancho

13 instancia.name = "Gancho_" + str(i)

14

15 # Color azul para las aristas (modulate afecta a todo el

mesh)

16 instancia.modulate = Color(0, 0, 1)

17

18 # Calculamos el ángulo: 0, 90, 180, 270 grados

19 var angulo = i * (PI / 2.0) # usamos pi/2 ya que tenemos que

el círculo completo es 2pi y como tenemos 4 instancias , 2pi

/4 = pi/2

20

21 # --- CÁLCULO DE LA MATRIZ DE TRANSFORMACIÓN ---

22 # Aplicamos la fórmula: M = T(C) * R(theta) * T(-C)

23

24 # 1. Matriz para mover el pivote al origen

25 var t_al_origen = Transform2D ().translated(-centro_rotacion)

26

27 # 2. Matriz de rotación

28 var rotacion = Transform2D ().rotated(angulo)

29

30 # 3. Matriz para devolver el pivote a su sitio

31 var t_de_vuelta = Transform2D ().translated(centro_rotacion)

32

33 # En Godot , las matrices se multiplican en orden de aplicaci

ón (Padre * Hijo),

34 # pero aquí estamos componiendo una sola transformación

compleja.

35 # El orden lógico es: primero T_al_origen , luego Rotacion ,

luego T_de_vuelta.

36 # M * v = (T_vuelta * (Rot * (T_origen * v)))

37 instancia.transform = t_de_vuelta * rotacion * t_al_origen

38

39 add_child(instancia)

40

41 # Nota: la función gancho () localmente:

42 # func gancho () -> ArrayMesh:

Informática Gráfica Ismael Sallami Moreno

1.3 Sesión 4 51

43 # var vertices = PackedVector2Array ([

44 # Vector2(0, 0), Vector2(1, 0), Vector2(1, 1), Vector2

(0, 1), Vector2(0, 2)

45 #])

46 # var am = ArrayMesh.new()

47 # var arr = []

48 # arr.resize(Mesh.ARRAY_MAX)

49 # arr[Mesh.ARRAY_VERTEX] = vertices

50 # am.add_surface_from_arrays(Mesh.PRIMITIVE_LINE_STRIP , arr)

51 # return am
� �

1.3 Sesión 4
Ejercicio 1.3.1

Supongamos que queremos codificar una esfera de radio 1/2 y centro en el origen de dos
formas:

1) Por enumeración espacial, dividiendo el cubo que engloba a la esfera en celdas, de
forma que haya k celdas por lado del cubo, todas ellas son cubos de 1/k de ancho.
Cada celda ocupa un bit de memoria (si su centro está en la esfera, se guarda un 1, en
otro caso un 0).

2) Usando un modelo de fronteras (una malla indexada de triángulos), en el cual se usa
una rejilla de triángulos y aristas que siguen los meridianos y paralelos, habiendo en
cada meridiano y en cada paralelo un total de k vértices (se guarda únicamente la tabla
de vértices y la de triángulos).

Asumiendo que un float y un int ocupan 4 bytes cada uno, contesta a estas cuestiones:
1) Expresa el tamaño de ambas representaciones en bytes como una función de k.
2) Suponiendo que k = 16 calcula cuántos KB de memoria ocupa cada estructura.
3) Haz lo mismo asumiendo ahora que k = 1024 (expresa los resultados en MB).
4) Compara los tamaños de ambas representaciones en ambos casos (k = 16 y k = 1024).

Solución 1.3.1. Para resolver este ejercicio, analizaremos detalladamente los requisitos de memoria
de cada uno de los modelos propuestos, basándonos en la teoría de representación de modelos
geométricos, específicamente la diferencia entre modelos de volúmenes (enumeración espacial) y
modelos de fronteras (mallas de polígonos).

1) Expresión del tamaño en memoria como función de k.
Analicemos primero el modelo por enumeración espacial.
El espacio que engloba a la esfera de radio r = 1/2 es un cubo de lado L = 2r = 1. Este
cubo se discretiza en una rejilla tridimensional de k celdas por lado. Por lo tanto, el número
total de celdas (vóxeles) en el volumen es:

Nceldas = k × k × k = k3

El enunciado especifica que cada celda ocupa exactamente 1 bit. Para obtener el tamaño en
bytes, debemos dividir el número total de bits por 8 (dado que 1 byte = 8 bits).

Informática Gráfica Ismael Sallami Moreno

1.3 Sesión 4 52

Memenum(k) = k3

8 bytes

Analicemos ahora el modelo de fronteras mediante malla indexada de triángulos.
Una malla indexada consta de dos estructuras de datos principales: la tabla de vértices y la
tabla de triángulos (índices).
El enunciado indica que la malla se forma siguiendo meridianos y paralelos con k vértices en
cada uno. Esto sugiere una topología de rejilla rectangular de dimensiones k × k mapeada
sobre la esfera. En consecuencia, el número de vértices nV es:

nV = k2

Para una malla cerrada y conexa que representa una esfera, topológicamente equivalente a
una rejilla envolvente, el número de caras (triángulos) nT se aproxima al doble del número de
vértices (según la característica de Euler para mallas triangulares cerradas donde nT ≈ 2nV).
Si consideramos una rejilla de (k− 1)× (k− 1) cuadriláteros, y cada cuadrilátero se divide en
2 triángulos, tendríamos 2(k− 1)2 triángulos. Para valores grandes de k, podemos aproximar
el número de triángulos como:

nT ≈ 2k2

Calculamos ahora el uso de memoria para cada tabla:
1) Tabla de vértices: Cada vértice almacena 3 coordenadas (x, y, z) de tipo float. Si

cada float ocupa 4 bytes, el tamaño de un vértice es 3× 4 = 12 bytes.

Memvert = 12× nV = 12k2 bytes

2) Tabla de triángulos: Cada triángulo almacena 3 índices de tipo int. Si cada int ocupa
4 bytes, el tamaño de un triángulo es 3× 4 = 12 bytes.

Memtri = 12× nT ≈ 12× (2k2) = 24k2 bytes

El tamaño total de la malla indexada es la suma de ambas tablas:

Memmalla(k) = 12k2 + 24k2 = 36k2 bytes

2) Cálculo de memoria para k = 16 (en KB).
Sustituimos k = 16 en las funciones obtenidas:
Para la enumeración espacial:

Memenum(16) = 163

8 = 4096
8 = 512 bytes

Convirtiendo a Kilobytes (1 KB = 1024 bytes):

Memenum(16) = 512
1024 = 0,5 KB

Para la malla indexada:

Memmalla(16) = 36× 162 = 36× 256 = 9216 bytes

Informática Gráfica Ismael Sallami Moreno

1.3 Sesión 4 53

Convirtiendo a Kilobytes:

Memmalla(16) = 9216
1024 = 9 KB

3) Cálculo de memoria para k = 1024 (en MB).
Sustituimos k = 1024 en las funciones. Nótese que 1024 = 210.
Para la enumeración espacial:

Memenum(1024) = (210)3

23 = 230

23 = 227 bytes

Sabemos que 1 MB = 10242 bytes = 220 bytes.

Memenum(1024) = 227

220 = 27 = 128 MB

Para la malla indexada:

Memmalla(1024) = 36× (1024)2 = 36× 220 bytes

Convirtiendo a Megabytes:
Memmalla(1024) = 36 MB

4) Comparación de tamaños.
Los resultados obtenidos ilustran la diferencia fundamental en la complejidad espacial entre
los modelos volumétricos y los de frontera.

1) Caso k = 16 (Baja resolución): La enumeración espacial ocupa menos memoria (0,5
KB) que la malla indexada (9 KB). Esto se debe a que, para resoluciones muy bajas,
el coste de almacenar coordenadas e índices explícitos (36 bytes por elemento efectivo)
supera el coste de almacenar simplemente 1 bit por celda, dado que el volumen total
(k3) aún no ha crecido lo suficiente para dominar la expresión.

2) Caso k = 1024 (Alta resolución): La enumeración espacial ocupa significativamente
más memoria (128 MB) que la malla indexada (36 MB). Aquí se observa la naturaleza
cúbica O(k3) de la enumeración espacial frente a la naturaleza cuadrática O(k2) del
modelo de fronteras. Al aumentar la resolución, el número de celdas interiores (volu-
men) crece mucho más rápido que el número de vértices necesarios para representar
la superficie (área).

Conclusión: La enumeración espacial es extremadamente ineficiente en memoria para altas
resoluciones, mientras que los modelos de frontera (mallas) son mucho más eficientes para
representar objetos sólidos mediante su superficie, especialmente a medida que aumenta la
precisión requerida (k).

Informática Gráfica Ismael Sallami Moreno

1.3 Sesión 4 54

Ejercicio 1.3.2

Considera una malla indexada (tabla de vértices y tabla de caras, esta última con índices de
vértices) con una topología de rejilla rectangular. La rejilla está compuesta por n columnas de
pares de triángulos y m filas. Esto implica que la estructura tiene n + 1 columnas de vértices
y m + 1 filas de vértices, con n, m > 0.
La figura siguiente ilustra un esquema simplificado de dicha topología (donde los puntos azules
representan los vértices y las líneas las aristas que forman los triángulos):

Ancho (n columnas de quads)A
lto

(m
fil

as
)

En relación a este tipo de mallas, responde a las siguientes cuestiones:
(a) Supongamos que un float ocupa 4 bytes y un int ocupa también 4 bytes. ¿Qué

tamaño en memoria ocupa la malla completa en bytes? Ten en cuenta únicamente el
tamaño de la tabla de vértices y la tabla de triángulos. Expresa el tamaño como una
función de m y n.

(b) Calcula el tamaño exacto en KiloBytes (KB) suponiendo que m = n = 128.
(c) Supongamos que m y n son ambos grandes (es decir, asumimos que términos como

1/n y 1/m son despreciables frente a 1). Deduce qué relación aproximada existe entre
el número de caras (nC) y el número de vértices (nV) en este tipo de mallas.

Solución 1.3.2. Para resolver este problema, analizaremos por separado el consumo de memoria de
la geometría (tabla de vértices) y de la topología (tabla de triángulos).

(a) Cálculo de la función de memoria Mem(m, n) en bytes
Primero determinamos la cantidad de elementos:

– Número de vértices (nV): La rejilla tiene m filas de celdas y n columnas de celdas.
Los vértices se sitúan en las intersecciones.

Filas de vértices = m + 1

Columnas de vértices = n + 1

nV = (m + 1)(n + 1)

– Número de caras/triángulos (nC): Cada celda de la rejilla (formada por la
intersección de una fila y una columna) es un cuadrilátero dividido en 2 triángulos.

Número de celdas = m× n

nC = 2× (m× n) = 2mn

Ahora calculamos el uso de memoria sabiendo que 1 float = 4 bytes y 1 int = 4 bytes:
– Memoria de la Tabla de Vértices (MV): Cada vértice almacena 3 coordenadas

Informática Gráfica Ismael Sallami Moreno

1.3 Sesión 4 55

(x, y, z) de tipo float.

MV = nV × 3× 4 bytes = 12(m + 1)(n + 1) bytes

– Memoria de la Tabla de Triángulos (MT): Cada triángulo almacena 3 índices
de vértices (i, j, k) de tipo int.

MT = nC × 3× 4 bytes = 12× (2mn) bytes = 24mn bytes

Memoria Total (Mem):
Mem(m, n) = MV + MT

Mem(m, n) = 12(mn + m + n + 1) + 24mn

Agrupando términos semejantes:

Mem(m, n) = 12mn + 12m + 12n + 12 + 24mn

Mem(m, n) = 36mn + 12m + 12n + 12 bytes

(b) Cálculo para m = n = 128
Sustituimos m y n por 128 en la fórmula obtenida:

Mem(128, 128) = 36(128× 128) + 12(128) + 12(128) + 12

Mem(128, 128) = 36(16384) + 1536 + 1536 + 12

Mem(128, 128) = 589824 + 3084

Mem(128, 128) = 592908 bytes

Para convertir a KiloBytes (KB), dividimos por 1024:

Memoria en KB = 592908
1024 ≈ 579,01 KB

Resultado: Aproximadamente 579 KB.
(c) Relación asintótica entre nC y nV

Partimos de las expresiones deducidas en el apartado (a):

nV = (m + 1)(n + 1) = mn + m + n + 1

nC = 2mn

Si asumimos que m y n son grandes, los términos lineales (m, n) y el término constante (1)
son despreciables frente al término cuadrático (mn). Matemáticamente:

ĺım
m,n→∞

nV

mn
= ĺım

m,n→∞

mn + m + n + 1
mn

= 1

Por tanto, para valores grandes, podemos aproximar:

nV ≈ mn

Informática Gráfica Ismael Sallami Moreno

1.3 Sesión 4 56

Nota: se divide por el término de mayor grado porque de esta manera, en matemáticas,
vemos como se comporta en el infinito, otra opción es el mismo límite de nc/nv.
Calculamos la relación (ratio) entre el número de caras y el número de vértices:

nC

nV
≈ 2mn

mn
= 2

Conclusión: En mallas cerradas o mallas de rejilla densas (donde los efectos de borde
son insignificantes), el número de caras (triángulos) es aproximadamente el doble
que el número de vértices:

nC ≈ 2nV

Ejercicio 1.3.3

Imagina de nuevo una malla con topología de rejilla, en la cual hay n columnas de pares de
triángulos y m filas. Supongamos que usamos una representación como tiras de triángulos
(Triangle Strips), de forma que cada fila de triángulos (con 2n triángulos) se almacena en una
tira independiente, habiendo un total de m tiras.
La estructura de datos consta de una tabla de punteros a tiras (que tiene un entero para el
número de tiras y m punteros, donde cada puntero ocupa 8 bytes) y los arrays de coordenadas
de las tiras. Asume que las coordenadas son de tipo float (4 bytes) y que no se usan índices
(las coordenadas se almacenan explícitamente en el orden de la tira).
Responde a las siguientes cuestiones:

(a) Indica qué cantidad de memoria ocupa esta representación en dos casos:
(1) Como función de n y m, en bytes.
(2) Suponiendo m = n = 128, en KB.

(b) Para m y n grandes (asumiendo que los términos lineales son despreciables frente a
los cuadráticos), describe qué relación hay entre el tamaño en memoria de la malla
indexada (Problema 4.2) y el tamaño de la malla almacenada como tiras de triángulos.

(c) Si suponemos que la transformación de cada vértice se hace en un tiempo constante
igual a la unidad, describe qué relación hay entre los tiempos de procesamiento de
vértices para esta malla cuando se representa como una malla indexada y como tiras
de triángulos.

Solución 1.3.3. Para resolver este ejercicio, primero debemos determinar cuántos vértices se almace-
nan explícitamente en una tira de triángulos que representa una fila de la rejilla.

– Una tira de triángulos que contiene k triángulos requiere k + 2 vértices. Básicamente, sabemos
que cada nuevo triángulo en la tira comparte dos vértices con el triángulo anterior, si para 2
triangulos necesitamos 4 vértices, por inducción (3 vértices × (k-1) restantes × 1 vértice que
añadimos) se llega a la fórmula k + 2.

– En la rejilla descrita, cada fila contiene n celdas cuadradas (pares de triángulos). Por lo tanto,
el número de triángulos por fila (por tira) es k = 2n.

– El número de vértices almacenados por cada tira es:

Vtira = (2n) + 2 = 2n + 2

– Cada vértice consta de 3 coordenadas (x, y, z) de tipo float (4 bytes cada uno). El tamaño
de un vértice es:

Bvertice = 3× 4 bytes = 12 bytes

Informática Gráfica Ismael Sallami Moreno

1.3 Sesión 4 57

Ejemplo de una tira (n = 3 quads, 2n = 6 triángulos, 2n + 2 = 8 vértices)

(a) Cálculo de Memoria

(1) Función de n y m en bytes

El tamaño total Mtotal se compone del tamaño de los datos de las tiras y la sobrecarga de la
estructura de punteros.

1) Memoria de los vértices: Hay m tiras.

Mgeom = m× (2n + 2) vértices× 12 bytes/vértice

Mgeom = 12m(2n + 2) = 24nm + 24m bytes

2) Memoria de la tabla de punteros: Contiene 1 entero (4 bytes) y m punteros (8 bytes
c/u1).

Mestructura = 4 + 8m bytes

3) Memoria Total:
Mtotal(n, m) = (24nm + 24m) + (8m + 4)

Mtotal(n, m) = 24nm + 32m + 4 bytes

(2) Cálculo para m = n = 128

Sustituimos los valores en la fórmula obtenida:

Mtotal(128, 128) = 24(128× 128) + 32(128) + 4

Mtotal = 24(16384) + 4096 + 4

Mtotal = 393216 + 4096 + 4 = 397316 bytes

Para convertir a Kilobytes (asumiendo 1 KB = 1024 bytes):

MKB = 397316
1024 ≈ 388,00 KB

(b) Relación de tamaño con Malla Indexada

Para n, m grandes, solo consideramos los términos de mayor orden (nm).

1. Tamaño Malla Indexada (del Problema 4.2):

– Vértices únicos: ≈ nm. Tamaño: nm× 12 bytes.
– Triángulos: ≈ 2nm. Índices: 2nm×3 índices×4 bytes = 24nm bytes. El cálculo de los índices

ha sido número de triángulos por 3 índices por triángulo por 4 bytes por índice.
– Total Indexada: 12nm + 24nm = 36nm bytes.

2. Tamaño Tiras de Triángulos (obtenido en a):

1cada uno

Informática Gráfica Ismael Sallami Moreno

1.3 Sesión 4 58

– Total Tiras: 24nm bytes.

Comparación:

Calculamos la relación (ratio) entre ambas representaciones:

Memoria Tiras
Memoria Indexada ≈

24nm

36nm
= 2

3

Conclusión:

La representación mediante tiras de triángulos ocupa aproximadamente el 66.6 % (dos tercios) de
la memoria que ocupa la malla indexada para esta topología de rejilla. Esto se debe a que, aunque
las tiras duplican los vértices compartidos entre filas adyacentes, evitan el coste de almacenar
3 enteros por cada triángulo, que es más costoso que almacenar coordenadas repetidas en este
escenario específico.

(c) Comparación de tiempos de procesamiento

El tiempo de procesamiento de vértices (Tproc) en la GPU depende del número de veces que se debe
ejecutar el Vertex Shader.

1. Malla Indexada:

Gracias al Post-Transform Cache de la GPU, los vértices indexados suelen procesarse una sola vez
por cada vértice único (idealmente).

Vunicos ≈ nm =⇒ Tindex ∝ nm

2. Tiras de Triángulos (No Indexadas):

En la implementación descrita (arrays de arrays), los vértices se envían explícitamente por cada
tira. Los vértices que se encuentran en la frontera entre la fila i y la fila i + 1 están duplicados
en memoria (aparecen en la tira i y en la tira i + 1). La GPU no sabe que son el mismo vértice
geométrico y debe procesarlos dos veces.

Vtiras = m(2n + 2) ≈ 2nm =⇒ Ttiras ∝ 2nm

Conclusión:
Ttiras

Tindex
≈ 2nm

nm
= 2

El tiempo de procesamiento usando tiras de triángulos independientes (no indexadas) es apro-
ximadamente el doble que usando una malla indexada. Aunque las tiras ahorran memoria de
almacenamiento en disco/RAM en este caso, son menos eficientes computacionalmente porque
obligan a la GPU a transformar los mismos vértices frontera múltiples veces.

Informática Gráfica Ismael Sallami Moreno

1.3 Sesión 4 59

Ejercicio 1.3.4

Supongamos una malla cerrada, simplemente conexa (topológicamente equivalente a una
esfera), cuyas caras son triángulos y cuyas aristas son todas adyacentes a exactamente dos
caras (la malla es un poliedro simplemente conexo de caras triangulares).
Considera el número de vértices nV , el número de aristas nA y el número de caras nC en este
tipo de mallas.
Demuestra que cualquiera de esos números determina a los otros dos, en concreto, demuestra
que se cumplen estas dos igualdades:

nA = 3(nV − 2)

nC = 2(nV − 2)

Solución 1.3.4. Para demostrar las igualdades propuestas, utilizaremos dos propiedades fundamen-
tales de la topología de superficies cerradas y de las mallas triangulares. Procederemos paso a paso
estableciendo un sistema de ecuaciones.

1) Aplicación de la Fórmula de Euler-Poincaré:
Dado que el enunciado especifica que la malla es cerrada y topológicamente equivalente a
una esfera (género g = 0), se cumple la característica de Euler para poliedros convexos:

nV − nA + nC = 2 (1.7)

Donde:
– nV : Número de vértices.
– nA: Número de aristas.
– nC : Número de caras.

2) Relación de adyacencia Caras-Aristas:
En una malla compuesta exclusivamente por triángulos, cada cara tiene exactamente 3 aristas.
Además, al ser una variedad cerrada (manifold), cada arista es compartida exactamente por
2 caras.
Podemos contar el número total de ”lados” de los triángulos de dos formas:

– Multiplicando el número de caras por 3: 3 · nC .
– Multiplicando el número de aristas por 2 (ya que cada arista cuenta para dos caras):

2 · nA.
Igualando ambas cantidades obtenemos la segunda ecuación fundamental:

3nC = 2nA =⇒ nC = 2
3nA o bien nA = 3

2nC (1.8)

3) Demostración de nC = 2(nV − 2):
Sustituimos nA en la Ecuación (1.7) utilizando la relación obtenida en (1.8) (nA = 3

2 nC):

nV −
(

3
2nC

)
+ nC = 2

Multiplicamos toda la ecuación por 2 para eliminar la fracción:

2nV − 3nC + 2nC = 4

Informática Gráfica Ismael Sallami Moreno

1.3 Sesión 4 60

Simplificamos los términos de nC :

2nV − nC = 4

Despejamos nC :
nC = 2nV − 4

Factorizamos el 2:
nC = 2(nV − 2)

Q.E.D. (Queda demostrado que el número de caras es aproximadamente el doble que el de
vértices).

4) Demostración de nA = 3(nV − 2):
Partimos de nuevo de la Ecuación (1.7), pero esta vez sustituimos nC despejándolo de (1.8)
como nC = 2

3 nA:

nV − nA +
(

2
3nA

)
= 2

Multiplicamos toda la ecuación por 3 para eliminar la fracción:

3nV − 3nA + 2nA = 6

Simplificamos los términos de nA:

3nV − nA = 6

Despejamos nA:
nA = 3nV − 6

Factorizamos el 3:
nA = 3(nV − 2)

v0

v1 v2

v3

Ejemplo: Tetraedro (nV = 4, nA = 6, nC = 4)

Informática Gráfica Ismael Sallami Moreno

1.3 Sesión 4 61

Ejercicio 1.3.5

En una malla indexada, queremos añadir a la estructura de datos una tabla de aristas. Será
un vector ari, que en cada entrada tendrá una tupla de tipo Vector2i (contiene dos int) con
los índices en la tabla de vértices de los dos vértices en los extremos de la arista. El orden en
el que aparecen los vértices en una arista es indiferente, pero cada arista debe aparecer una
sola vez.
Escribe el código de una función GDScript para crear y calcular la tabla de aristas a partir de
la tabla de triángulos. Intenta encontrar una solución con la mínima complejidad en tiempo y
memoria posible. Suponer que el número de vértices adyacentes a uno cualquiera de ellos es
como mucho un valor constante k > 0, valor que no depende del número total de vértices, que
llamamos n.
Considerar dos casos:

(a) Los triángulos se dan con orientación no coherente: esto quiere decir que si un triángulo
está formado por los vértices i, j, k, estos tres índices pueden aparecer en cualquier
orden en la correspondiente entrada de la tabla de triángulos. Además, no sabemos si
la malla es cerrada o no.

(b) Los triángulos se dan con orientación coherente: esto quiere decir que si dos triángulos
comparten una arista entre los vértices i y j, entonces en uno de los triángulos la
arista aparece como (i, j) y en el otro aparece como (j, i). Además, asumimos que
la malla es cerrada, es decir, que cada arista es compartida por exactamente dos
triángulos.

Solución 1.3.5. Para resolver este problema, debemos iterar sobre la tabla de triángulos y extraer
las aristas potenciales. La diferencia fundamental entre los dos casos radica en cómo garantizamos
la unicidad de las aristas (evitar duplicados) de manera eficiente.

Caso (a): Orientación no coherente y malla general

En este escenario, no podemos predecir el orden de los índices ni cuántas veces aparece una arista
(podría ser 1 si es frontera, o 2 si es interna, o más si la malla no es ”manifold”).

Estrategia:

1) Recorremos cada triángulo y extraemos sus 3 aristas: (v0, v1), (v1, v2) y (v2, v0).
2) Para identificar una arista de forma única sin importar el orden (es decir, que la arista i− j

sea igual a j− i), ordenamos los índices de cada par: guardamos siempre (mı́n(i, j), máx(i, j)).
3) Usamos una estructura de datos tipo Set (Conjunto) o un Diccionario para almacenar las

aristas encontradas. Esto elimina duplicados automáticamente con una complejidad promedio
de O(1) por inserción.

Código GDScript:

� �
1 func calcular_aristas_caso_a(triangulos: Array[Vector3i]) ->

Array[Vector2i]:

2 var aristas_unicas = {} # Usamos un diccionario como Set

3 for t in triangulos:

4 # Extraemos los 3 pares de vértices

5 var pares = [

6 Vector2i(t[0], t[1]),

7 Vector2i(t[1], t[2]),

8 Vector2i(t[2], t[0])

Informática Gráfica Ismael Sallami Moreno

1.3 Sesión 4 62

9]

10 for par in pares:

11 # Normalizamos la arista: (menor , mayor)

12 var a = par.x

13 var b = par.y

14 var key: Vector2i

15 if a < b:

16 key = Vector2i(a, b)

17 else:

18 key = Vector2i(b, a)

19 # Insertamos en el diccionario (la clave evita

duplicados)

20 aristas_unicas[key] = true

21 # Convertimos las claves del diccionario a un Array

22 var ari: Array[Vector2i] = []

23 for key in aristas_unicas.keys():

24 ari.append(key)

25 return ari
� �
Complejidad:

– Tiempo: O(Nt), donde Nt es el número de triángulos (asumiendo inserción en hash map
constante).

– Memoria: O(Na), donde Na es el número de aristas únicas, necesario para el diccionario
auxiliar.

Caso (b): Orientación coherente y malla cerrada

En este escenario, tenemos una propiedad topológica fuerte: cada arista interna es compartida por
exactamente dos triángulos. Debido a la orientación coherente, si la arista conecta los vértices A y
B:

– En el Triángulo 1 aparecerá como secuencia · · · → A→ B → . . .

– En el Triángulo 2 aparecerá como secuencia · · · → B → A→ . . .

Estrategia: Para evitar duplicados sin usar memoria extra (diccionarios), podemos aplicar una
regla de selección simple: Solo añadimos la arista si el índice de origen es menor que el
índice de destino (i < j).

– Cuando procesemos el par (i, j) donde i < j, lo guardamos.
– Cuando procesemos el par (j, i) (que existirá obligatoriamente en el triángulo vecino), como

j > i, lo ignoramos.

Esto garantiza que cada arista se añade exactamente una vez.

Código GDScript:

� �
1 func calcular_aristas_caso_b(triangulos: Array[Vector3i]) ->

Array[Vector2i]:

2 var ari: Array[Vector2i] = []

3 for t in triangulos:

4 # Definimos los 3 pares tal cual aparecen en el orden

Informática Gráfica Ismael Sallami Moreno

1.3 Sesión 4 63

del triángulo

5 # Arista 0-1

6 if t[0] < t[1]:

7 ari.append(Vector2i(t[0], t[1]))

8 # Arista 1-2

9 if t[1] < t[2]:

10 ari.append(Vector2i(t[1], t[2]))

11 # Arista 2-0

12 if t[2] < t[0]:

13 ari.append(Vector2i(t[2], t[0]))

14 return ari
� �
Complejidad:

– Tiempo: O(Nt). Es extremadamente rápido porque solo implica comparaciones de enteros.
– Memoria: O(1) de memoria auxiliar (no necesitamos estructuras intermedias como diccionarios,

escribimos directamente en el resultado).

Ejercicio 1.3.6

Escribe el pseudo-código de la función para calcular el área total de una malla indexada de
triángulos, a partir de la tabla de vértices y de la tabla de triángulos.
Será una función GDScript que acepta ambas tablas:

– vertices: un array de tipo Vector3 que contiene las posiciones espaciales.
– triangulos: un array de tipo Vector3i, donde cada elemento contiene los tres índices

enteros que forman una cara.
La función debe devolver el área total como un valor de punto flotante (float).

Solución 1.3.6. Para resolver este problema, debemos basarnos en la geometría vectorial. El área de
cualquier polígono complejo en 3D (la malla) es la suma de las áreas de sus primitivas individuales
(los triángulos).

Fundamento Matemático

El área de un triángulo en el espacio 3D definido por tres puntos P0, P1, P2 se puede calcular
utilizando el producto vectorial (o producto cruz).

1) Definimos dos vectores que representen dos lados del triángulo partiendo de un vértice común,
por ejemplo P0:

u⃗ = P1 − P0

v⃗ = P2 − P0

2) El producto vectorial w⃗ = u⃗× v⃗ genera un vector perpendicular al plano del triángulo.
3) La magnitud (o longitud) de este vector resultante, ||w⃗||, es igual al área del paralelogramo

formado por los vectores u⃗ y v⃗.
4) Dado que un triángulo es la mitad de un paralelogramo, el área del triángulo es la mitad de

dicha magnitud:
Áreatri = 1

2 ||u⃗× v⃗||

Informática Gráfica Ismael Sallami Moreno

1.3 Sesión 4 64

u⃗ = P1 − P0

v⃗ = P2 − P0

P0

P1

P2

||u⃗× v⃗|| = Área Paralelogramo

Implementación en GDScript

El algoritmo consiste en iterar sobre la tabla de triángulos, recuperar las coordenadas de los vértices
usando los índices, calcular el área de cada triángulo individual y acumularla en una variable total.

� �
1 func calcular_area_malla(vertices: Array[Vector3], triangulos:

Array[Vector3i]) -> float:

2 var area_total: float = 0.0

3 for t in triangulos:

4 var p0: Vector3 = vertices[t[0]]

5 var p1: Vector3 = vertices[t[1]]

6 var p2: Vector3 = vertices[t[2]]

7 var u: Vector3 = p1 - p0

8 var v: Vector3 = p2 - p0

9 var vector_area: Vector3 = u.cross(v)

10 var area_triangulo: float = vector_area.length () * 0.5

11 area_total += area_triangulo

12 return area_total
� �
Análisis de complejidad: Si Nt es el número de triángulos (longitud del array triangulos), la
complejidad temporal es O(Nt), ya que realizamos un número constante de operaciones matemáticas
(restas y producto vectorial) por cada cara de la malla.

Informática Gráfica Ismael Sallami Moreno

1.4 Sesión 5 65

1.4 Sesión 5
Ejercicio 1.4.1

Implementa un proyecto cuya escena principal tenga un nodo de tipo Node2D con varios nodos
hijos, que formen la figura con un cuadrado de lado 2, centrado en el origen, y con un triángulo
inscrito.
El cuadrado debe estar relleno de azul claro, el triángulo de blanco, y las aristas deben verse
de color azul oscuro.

Solución 1.4.1. Solución al problema 5.1:

� �
1 # Problema 5.1:

2 # Implementa un proyecto cuya escena principal tenga un de tipo

Node2D con

3 # varios nodos hijos , que formen la figura con un cuadrado de

lado 2, centrado

4 # en el origen , y con un triángulo inscrito. El cuadrado debe

estar relleno de azul

5 # claro , el triángulo de blanco , y las aristas deben verse de

color azul oscuro.

6

7

8 extends Node2D

9

10 # Referencia al Singleton (Autoload) que contiene las

herramientas

11 # const Utils = preload ("res:// FuncionesAuxiliaresT5.gd") # otra

opción posible

12 # NOTA: Si ya lo tenemos configurado como Autoload global ,

puedes usar directamente

13 # el nombre 'FuncionesAuxiliaresT5 ' en lugar de la variable '

Utils '.

14

15 func _ready ():

16 # ===============================

17 # DEFINICIÓN DE GEOMETRÍA

18 # Cuadrado de lado 2 centrado en el origen: va de -1 a 1 en X

e Y.

19 # Triángulo inscrito: definimos vértices que quepan dentro del

cuadrado.

20 # ===============================

21

Informática Gráfica Ismael Sallami Moreno

1.4 Sesión 5 66

22 # Vértices para el RELLENO del cuadrado (2 triángulos para

formar un quad)

23 var v_cuadrado_relleno = PackedVector2Array ([

24 Vector2(-1, -1), Vector2(1, -1), Vector2(-1, 1), # Triángulo

1

25 Vector2(1, -1), Vector2(1, 1), Vector2(-1, 1) # Triángulo

2

26])

27

28 # Vértices para el BORDE del cuadrado (Polilínea cerrada)

29 var v_cuadrado_borde = PackedVector2Array ([

30 Vector2(-1, -1), Vector2(1, -1),

31 Vector2(1, 1), Vector2(-1, 1),

32 Vector2(-1, -1) # Repetimos el primero para cerrar

33])

34

35 # Vértices para el RELLENO del triángulo (1 triángulo simple)

36 # Lo hacemos un poco más pequeño para que se vea "dentro"

claramente

37 var v_triangulo_relleno = PackedVector2Array ([

38 Vector2(-0.5, -0.5), Vector2 (0.5, -0.5), Vector2(0, 0.8)

39])

40

41 # Vértices para el BORDE del triángulo (Polilínea cerrada)

42 var v_triangulo_borde = PackedVector2Array ([

43 Vector2(-0.5, -0.5), Vector2 (0.5, -0.5),

44 Vector2(0, 0.8), Vector2(-0.5, -0.5)

45])

46

47 # ===============================

48 # CREACIÓN DE MALLAS

49 # ===============================

50

51 # 1. Crear el cuadrado relleno (Azul Claro)

52 # Usamos una función local porque el Autoload solo crea

LINE_STRIP

53 var mesh_cuadrado_relleno = FuncionesAuxiliaresT5.

_crear_malla_rellena(v_cuadrado_relleno)

54 var nodo_cuad_relleno = FuncionesAuxiliaresT5.

CrearMeshInstance2D(mesh_cuadrado_relleno , Transform2D ())

55 nodo_cuad_relleno.modulate = Color (0.6, 0.8, 1.0) # Azul claro

56 add_child(nodo_cuad_relleno)

57

58 # 2. Crear el borde del cuadrado (Azul Oscuro)

59 # Usamos la función del Autoload (genera líneas)

60 var mesh_cuadrado_borde = FuncionesAuxiliaresT5.CrearArrayMesh

(v_cuadrado_borde)

61 var nodo_cuad_borde = FuncionesAuxiliaresT5.

Informática Gráfica Ismael Sallami Moreno

1.4 Sesión 5 67

CrearMeshInstance2D(mesh_cuadrado_borde , Transform2D ())

62 nodo_cuad_borde.modulate = Color (0.0, 0.0, 0.5) # Azul oscuro

63 # Opcional: aumentar grosor de línea si se usa un material

específico ,

64 # pero por defecto Godot dibuja líneas de 1px.

65 add_child(nodo_cuad_borde)

66

67 # 3. Crear el triángulo relleno (Blanco)

68 var mesh_tri_relleno = FuncionesAuxiliaresT5.

_crear_malla_rellena(v_triangulo_relleno)

69 var nodo_tri_relleno = FuncionesAuxiliaresT5.

CrearMeshInstance2D(mesh_tri_relleno , Transform2D ())

70 nodo_tri_relleno.modulate = Color.WHITE # Blanco

71 add_child(nodo_tri_relleno)

72

73 # 4. Crear el borde del triángulo (Azul Oscuro)

74 var mesh_tri_borde = FuncionesAuxiliaresT5.CrearArrayMesh(

v_triangulo_borde)

75 var nodo_tri_borde = FuncionesAuxiliaresT5.CrearMeshInstance2D

(mesh_tri_borde , Transform2D ())

76 nodo_tri_borde.modulate = Color (0.0, 0.0, 0.5) # Azul oscuro

77 add_child(nodo_tri_borde)

78

79 # Ajuste de visualización: Mover todo al centro de la pantalla

para verlo mejor

80 # position = get_viewport_rect ().size / 2

81 # scale = Vector2 (100, 100) # Escalamos porque 2 pixels es muy

pequeño # al activarlo se ve justo en el medio de toda la

vista por lo que hay que hacer muy pequeña la misma
� �

Informática Gráfica Ismael Sallami Moreno

1.4 Sesión 5 68

Ejercicio 1.4.2

Crea un proyecto Godot con una escena principal con un nodo raíz compuesto. Ese nodo
tendrá tres hijos, cada uno es una instancia de la escena del problema anterior, pero con una
transformación distinta.

Solución 1.4.2. Solución al problema 5.2:

� �
1 extends Node2D

2

3 # Cargamos la escena del Problema 5.1 para instanciarla

4 const ESCENA_BASE = preload ("res:// escenaHijos/problema_5_1.tscn

")

5

6 # Definimos una escala base para que se vea bien en pantalla

7 const S = 1

8

9 func _ready ():

10 # Centramos todo el conjunto en la pantalla

11 # position = Vector2 (200, 300)

12

13 # =========================

14 # INSTANCIA 1: CUADRADO ORIGINAL

15 # =========================

16 var ins1 = ESCENA_BASE.instantiate ()

17 ins1.scale = Vector2(S, S)

18 ins1.position = Vector2(0, 0)

19 add_child(ins1)

20

21 # CALCULO DEL PUNTO DE CONEXIÓN 1 -> 2

22 # La esquina superior derecha del cuadrado (ins1) en

coordenadas locales es (1, -1).

23 # En coordenadas globales (relativas al padre) es: (S, -S).

24

25 # =========================

26 # INSTANCIA 2: ROMBO (ROTADO 45 GRADOS)

Informática Gráfica Ismael Sallami Moreno

1.4 Sesión 5 69

27 # =========================

28 var ins2 = ESCENA_BASE.instantiate ()

29 ins2.scale = Vector2(S, S)

30 ins2.rotation_degrees = 135

31

32 # CÁLCULO DE POSICIÓN PARA CONECTAR:

33 # El rombo tiene su vértice IZQUIERDO a una distancia de 'sqrt

(2) * S' de su centro.

34 # Queremos que ese vértice coincida con la esquina (S, -S) del

cuadrado.

35 # PosX = (Posición Borde Cuadrado) + (Distancia al centro del

Rombo)

36 # PosX = S + (S * sqrt (2))

37 # PosY = S (para alinearse con la parte superior del cuadrado)

38

39 var offset_rombo = S * sqrt (2)

40 ins2.position = Vector2(S + offset_rombo , S)

41

42 add_child(ins2)

43

44 # CALCULO DEL PUNTO DE CONEXIÓN 2 -> 3

45 # El vértice DERECHO del rombo está a 'offset_rombo ' a la

derecha de su centro.

46 # Posición Global Vértice Derecho = ins2.position + (

offset_rombo , 0)

47

48 # =========================

49 # INSTANCIA 3: RECTÁNGULO INVERTIDO (ESCALADO)

50 # =========================

51 var ins3 = ESCENA_BASE.instantiate ()

52 # Escalado (2, -1):

53 # X = 2 (Doble de ancho)

54 # Y = -1 (Reflexión vertical , el triángulo apunta abajo)

55 ins3.scale = Vector2 (2 * S, -S)

56

57 # CÁLCULO DE POSICIÓN PARA CONECTAR:

58 # La "esquina superior izquierda" visual de este rectángulo

corresponde

59 # geométricamente a (-1, 1) local antes de escalar , o (-2S, -S

) después de escalar.

60 # Queremos que (-2S, -S) coincida con el vértice derecho del

rombo.

61

62 # Coordenada X del vértice derecho del rombo:

63 var x_conexion = ins2.position.x + offset_rombo

64

65 # La posición del centro de ins3 debe ser tal que su izquierda

(-2S) toque la conexión.

Informática Gráfica Ismael Sallami Moreno

1.4 Sesión 5 70

66 ins3.position.x = x_conexion + (2 * S)

67

68 # Coordenada Y: Queremos que la parte superior (-S visual)

toque la conexión (ins2.y = -S)

69 # Como ins2 está en Y = -S y su vértice derecho está en Y=0

relativo a él...

70 # Espera , el vértice derecho del rombo está en la misma Y que

su centro (ins2.position.y).

71 # ins2.position.y es -S.

72 # La parte superior del rectángulo está en -S relativo a su

centro (0).

73 # Por tanto , si ponemos el centro de ins3 en Y=0, su parte

superior estará en -S.

74 ins3.position.y = 0

75

76 add_child(ins3)
� �
Ejercicio 1.4.3

Implementa un proyecto Godot con una función Tronco que crea y devuelve un Node2D con
dos nodos hijos que forman la figura de aquí abajo (uno para el relleno y otro para las aristas).
Tabla de coordenadas:

0 (+0,0, +0,0)
1 (+1,0, +0,0)
2 (+1,0, +1,0)
3 (+2,0, +2,0)
4 (+1,5, +2,5)
5 (+0,5, +1,5)
6 (+0,0, +3,0)
7 (−0,5, +3,0)
8 (+0,0, +1,5)

0 1

2

3

4

5

67

8

Informática Gráfica Ismael Sallami Moreno

1.4 Sesión 5 71

Solución 1.4.3. Solución al problema 5.3:

� �
1 # Problema 5.3:

2 # Implementa un proyecto Godot con una función Troncoque crea y

devuelve

3 # un Node2D con dos nodos hijos que forman la figura de aquí

abajo (uno para

4 # el relleno y otro para las aristas).

5

6 # PARTIMOS DE QUE EN 2D EL SENTIDO DA IGUAL , PERO SABEMOS QUE ES

HORARIO

7

8 extends Node2D

9

10 func _ready ():

11 # Generamos el tronco

12 var tronco = Tronco ()

13

14 # Lo añadimos a la escena

15 add_child(tronco)

16

17 # =====================

18 # Función: Tronco

19 # Descripción: Crea un Node2D compuesto por dos mallas (relleno

y borde)

20 # siguiendo la tabla de coordenadas de la página 60.

21 # =====================

22 func Tronco () -> Node2D:

23 var n = Node2D.new()

24

25 # 1. Definición de Vértices según la tabla del PDF

26 var v0 = Vector2 (0.0, 0.0)

27 var v1 = Vector2 (1.0, 0.0)

28 var v2 = Vector2 (1.0, 1.0)

29 var v3 = Vector2 (2.0, 2.0)

30 var v4 = Vector2 (1.5, 2.5)

31 var v5 = Vector2 (0.5, 1.5) # El "entrepierna" o bifurcación

32 var v6 = Vector2 (0.0, 3.0)

33 var v7 = Vector2(-0.5, 3.0)

34 var v8 = Vector2 (0.0, 1.5)

35

36 # -----------------------

37 # A. MALLA DE RELLENO (Triángulos)

38 # -----------------------

39 # Como el polígono es cóncavo , debemos triangularlo

manualmente.

40 # Dividimos la figura en 7 triángulos para cubrir toda la

superficie.

Informática Gráfica Ismael Sallami Moreno

1.4 Sesión 5 72

41 var vertices_relleno = PackedVector2Array ([

42 # Base del tronco (Cuadrilátero 0-1-2-8 dividido en dos)

43 v0, v1, v2,

44 v0, v2, v8,

45

46 # Triángulo central de unión (conecta tronco con ramas)

47 v8, v2, v5,

48

49 # Rama Derecha (Cuadrilátero 2-3-4-5 dividido)

50 v2, v3, v4,

51 v2, v4, v5,

52

53 # Rama Izquierda (Cuadrilátero 5-6-7-8 dividido)

54 v5, v6, v7,

55 v5, v7, v8

56])

57

58 # Usamos la función local auxiliar para crear malla de tipo

TRIANGLES

59 var malla_relleno = FuncionesAuxiliaresT5._crear_malla_rellena

(vertices_relleno)

60

61 # Instanciamos usando la función del autoload y asignamos

color lavanda/azul claro

62 var inst_relleno = FuncionesAuxiliaresT5.CrearMeshInstance2D(

malla_relleno , Transform2D ())

63 inst_relleno.modulate = Color (0.7, 0.7, 1.0)

64 n.add_child(inst_relleno)

65

66 # -----------------------

67 # B. MALLA DE BORDE (Línea)

68 # -----------------------

69 # Recorremos el perímetro exterior en orden

70 # var vertices_borde = PackedVector2Array ([

71 # v0, v1, v2, v3, v4, v5, v6, v7, v8s # Cerramos volviendo a

v0

72 #])

73

74 var vertices_borde = PackedVector2Array ([

75 v1, v2, # Lado derecho tronco

76 v2, v3, # Lado derecho rama derecha

77 # Saltamos 3-4 (punta derecha)

78 v4, v5, # Lado izquierdo rama derecha (interior V)

79 v5, v6, # Lado derecho rama izquierda (interior V)

80 # Saltamos 6-7 (punta izquierda)

81 v7, v8, # Lado izquierdo rama izquierda

82 v8, v0 # Lado izquierdo tronco

83 # Saltamos 0-1 (base+)

Informática Gráfica Ismael Sallami Moreno

1.4 Sesión 5 73

84])

85

86 # Usamos la función del autoload (genera LINE SIN STRIP ya que

este los conecta todos)

87 var malla_borde = FuncionesAuxiliaresT5.

_crear_malla_lineas_pares(vertices_borde)

88

89 # Instanciamos y asignamos color azul oscuro

90 var inst_borde = FuncionesAuxiliaresT5.CrearMeshInstance2D(

malla_borde , Transform2D ())

91 inst_borde.modulate = Color (0.0, 0.0, 0.0)

92 n.add_child(inst_borde)

93

94 return n
� �
Ejercicio 1.4.4

Implementa otro proyecto Godot que use la función del problema anterior para otra función,
Arbol(n), que genera un árbol de escena con la figura de aquí abajo, que incluye múltiples
instancias de Tronco, situadas recursivamente unas adyacentes a otras, hasta un nivel de
recursividad dado por n.

Solución 1.4.4. Solución al problema 5.4:

� �
1 # Problema 5.4:

2 # Implementa otro proyecto Godot que use la función del problema

anterior

3 # para otra función, Arbol(n) que genera un árbol de escena con

la figura

4 # de aquí abajo , que incluye múltiples instancias de Tronco ,

situadas recursi3

5 # vamente unas adyacentes a otras , hasta un nivel de

recursividad dado por n.

6

7 extends Node2D

8

9 # Configuración del árbol

10 var niveles_recursividad : int = 7

11

12 func _ready ():

13 # Generamos el árbol recursivo

14 var arbol = Arbol(niveles_recursividad)

15 add_child(arbol)

16

17 # ==================

18 # FUNCIÓN RECURSIVA: Arbol(n)

19 # Crea un nodo tronco y, si n > 0, le añade dos árboles más

Informática Gráfica Ismael Sallami Moreno

1.4 Sesión 5 74

pequeños (n-1)

20 # en las puntas , transformados geométricamente para encajar.

21 # ==================

22 func Arbol(n: int) -> Node2D:

23 # 1. Creamos la geometría de este nivel (el tronco base)

24 var nodo_actual = Tronco ()

25

26 # 2. Caso Base: Si n es 0, terminamos aquí (solo devolvemos el

tronco)

27 if n <= 0:

28 return nodo_actual

29

30 # 3. Caso Recursivo: Crear ramas hijas

31

32 # --- RAMA IZQUIERDA ---

33 # Debe encajar en el segmento superior izquierdo (v7 -> v6)

del padre.

34 var hijo_izq = Arbol(n - 1) # Recursión

35 hijo_izq.position = Vector2(-0.5, 3.0) # Vértice 7 del padre

36 hijo_izq.scale = Vector2 (0.5, 0.5) # Reduce al 50 %, ya que

el ancho de 6-7 es 0.5 cuando la base del hijo mide 1

37 hijo_izq.rotation = 0 # Sin rotación (

alineado con X)

38 nodo_actual.add_child(hijo_izq)

39

40 # --- RAMA DERECHA ---

41 # Debe encajar en el segmento superior derecho (v4 -> v3) del

padre.

42 var hijo_der = Arbol(n - 1) # Recursión

43 hijo_der.position = Vector2 (1.5, 2.5) # Vértice 4 del padre

44 hijo_der.scale = Vector2 (0.707 , 0.707) # 1 / sqrt (2) approx ,

ya que la distancia entre los vértices 3-4 es su módulo , es

decir , la diferencia de ambos puntos al cuadrado y sumada ,

luego aplicamos la raíz para saber el factor de escala

45 hijo_der.rotation_degrees = -45 # Rotar -45 para

encajar , ya que vamos bajando y la base es horizontal

46 nodo_actual.add_child(hijo_der)

47

48 return nodo_actual

49

50 # ==================

51 # GEOMETRÍA DEL TRONCO (Del ejercicio 5.3, con tapas abiertas)

52 # ==================

53 func Tronco () -> Node2D:

54 var n = Node2D.new()

55

56 # Vértices (Tabla Pág. 60)

57 var v0 = Vector2 (0.0, 0.0); var v1 = Vector2 (1.0, 0.0)

Informática Gráfica Ismael Sallami Moreno

1.4 Sesión 5 75

58 var v2 = Vector2 (1.0, 1.0); var v3 = Vector2 (2.0, 2.0)

59 var v4 = Vector2 (1.5, 2.5); var v5 = Vector2 (0.5, 1.5)

60 var v6 = Vector2 (0.0, 3.0); var v7 = Vector2(-0.5, 3.0)

61 var v8 = Vector2 (0.0, 1.5)

62

63 # --- RELLENO (Triángulos) ---

64 var vertices_relleno = PackedVector2Array ([

65 v0, v1, v2, v0, v2, v8, # Tronco

66 v8, v2, v5, # Centro

67 v2, v3, v4, v2, v4, v5, # Rama Der

68 v5, v6, v7, v5, v7, v8 # Rama Izq

69])

70 var m_relleno = _crear_malla_triangulos(vertices_relleno)

71 var inst_relleno = FuncionesAuxiliaresT5.CrearMeshInstance2D(

m_relleno , Transform2D ())

72 inst_relleno.modulate = Color (0.7, 0.7, 1.0)

73 n.add_child(inst_relleno)

74

75 # --- BORDE (Líneas Discontinuas) ---

76 # NO incluimos las tapas (0-1, 3-4, 6-7) para que la recursión

fluya visualmente

77 var vertices_borde = PackedVector2Array ([

78 v1, v2, v2, v3, # Lado derecho

79 v4, v5, v5, v6, # Interior V

80 v7, v8, v8, v0 # Lado izquierdo

81])

82 var m_borde = _crear_malla_segmentos(vertices_borde)

83 var inst_borde = FuncionesAuxiliaresT5.CrearMeshInstance2D(

m_borde , Transform2D ())

84 inst_borde.modulate = Color (0.0, 0.0, 0.8)

85 n.add_child(inst_borde)

86

87 return n

88

89 # ==================

90 # HELPERS LOCALES (las dejamos aquí para que a la hora de

estudiar poder tenerlas más a mano)

91 # ==================

92 func _crear_malla_triangulos(v: PackedVector2Array) -> ArrayMesh

:

93 var tablas: Array = []; tablas.resize(Mesh.ARRAY_MAX)

94 tablas[Mesh.ARRAY_VERTEX] = v

95 var am = ArrayMesh.new()

96 am.add_surface_from_arrays(Mesh.PRIMITIVE_TRIANGLES , tablas)

97 return am

98

99 func _crear_malla_segmentos(v: PackedVector2Array) -> ArrayMesh:

100 var tablas: Array = []; tablas.resize(Mesh.ARRAY_MAX)

Informática Gráfica Ismael Sallami Moreno

1.4 Sesión 5 76

101 tablas[Mesh.ARRAY_VERTEX] = v

102 var am = ArrayMesh.new()

103 am.add_surface_from_arrays(Mesh.PRIMITIVE_LINES , tablas)

104 return am
� �
Ejercicio 1.4.5

En un proyecto Godot 3D (puedes usar la práctica 2), crea una figura como el logo de Android,
usando únicamente dos objetos ArrayMesh, uno con un cilindro y otro con una semiesfera.

Solución 1.4.5. Solución al problema 5.5:

� �
1 # Problema 5.5:

2 # En un proyecto Godot 3D (puedes usar la práctica 2) para crear

una figura

3 # como el logo de Android , usando únicamente dos objetos

ArrayMesh , uno

4 # con un cilindro y otro con una semiesfera.

5

6 extends Node3D

7

8 # Variables para almacenar las dos únicas mallas permitidas

9 var malla_cilindro: ArrayMesh

10 var malla_semiesfera: ArrayMesh

11

12 # Materiales

13 var material_verde: StandardMaterial3D

Informática Gráfica Ismael Sallami Moreno

1.4 Sesión 5 77

14 var material_negro: StandardMaterial3D

15

16 func _ready ():

17 # 1. Crear los recursos (Materiales y Mallas)

18 _crear_materiales ()

19 _generar_mallas ()

20

21 # 2. Construir la jerarquía (Ensamblaje)

22 construir_android ()

23

24 func _crear_materiales ():

25 # Verde corporativo de Android

26 material_verde = StandardMaterial3D.new()

27 material_verde.albedo_color = Color (0.24, 0.86, 0.35) # Aprox

Android Green

28

29 # Negro para los ojos

30 material_negro = StandardMaterial3D.new()

31 material_negro.albedo_color = Color.BLACK

32

33 func _generar_mallas ():

34 # --- Generar Cilindro ---

35 # Usamos primitivas de Godot para simplificar el código del

ejemplo ,

36 # pero conceptualmente es un ArrayMesh generado.

37 var cilindro = CylinderMesh.new()

38 cilindro.top_radius = 0.5

39 cilindro.bottom_radius = 0.5

40 cilindro.height = 1.0

41 # Convertimos a ArrayMesh para cumplir estrictamente el

enunciado

42 # que pide "objetos ArrayMesh" (aunque PrimitiveMesh hereda de

Mesh).

43 malla_cilindro = ArrayMesh.new()

44 malla_cilindro.add_surface_from_arrays(Mesh.

PRIMITIVE_TRIANGLES , cilindro.get_mesh_arrays ())

45

46 # --- Generar Semiesfera ---

47 var esfera = SphereMesh.new()

48 esfera.radius = 0.5

49 esfera.height = 0.5 # Hacemos que sea media esfera

50 esfera.is_hemisphere = true # Propiedad específica para

semiesfera

51 malla_semiesfera = ArrayMesh.new()

52 malla_semiesfera.add_surface_from_arrays(Mesh.

PRIMITIVE_TRIANGLES , esfera.get_mesh_arrays ())

53

54 func construir_android ():

Informática Gráfica Ismael Sallami Moreno

1.4 Sesión 5 78

55 # --- CUERPO (Cilindro) ---

56 var cuerpo = MeshInstance3D.new()

57 cuerpo.mesh = malla_cilindro

58 cuerpo.material_override = material_verde

59 # El cilindro por defecto tiene altura 1. Lo escalamos para

que sea el cuerpo.

60 cuerpo.scale = Vector3 (1.5, 1.5, 1.5)

61 cuerpo.position = Vector3(0, 0.75, 0) # Subirlo un poco

62 add_child(cuerpo)

63

64 # --- CABEZA (Semiesfera) ---

65 var cabeza = MeshInstance3D.new()

66 cabeza.mesh = malla_semiesfera

67 cabeza.material_override = material_verde

68 cabeza.scale = Vector3 (1.5, 1.5, 1.5) # Misma escala X/Z que

el cuerpo

69 cabeza.position = Vector3(0, 1.6, 0) # Sobre el cuerpo

70 add_child(cabeza)

71

72 # --- OJOS (Cilindros transformados) ---

73 # Ojo Izquierdo

74 var ojo_izq = MeshInstance3D.new()

75 ojo_izq.mesh = malla_cilindro

76 ojo_izq.material_override = material_negro

77 # Transformación clave: Escalar el cilindro para que parezca

un disco plano

78 ojo_izq.scale = Vector3 (0.1, 0.02, 0.1)

79 # Rotarlo para que mire al frente (El cilindro está orientado

en Y por defecto)

80 ojo_izq.rotation_degrees.x = 90

81 ojo_izq.position = Vector3(-0.25, 0.25, 0.45) # Posición

relativa a la cabeza

82 cabeza.add_child(ojo_izq) # ¡Hijo de la cabeza!

83

84 # Ojo Derecho (Instancia idéntica , distinta posición)

85 var ojo_der = MeshInstance3D.new()

86 ojo_der.mesh = malla_cilindro

87 ojo_der.material_override = material_negro

88 ojo_der.scale = Vector3 (0.1, 0.02, 0.1)

89 ojo_der.rotation_degrees.x = 90

90 ojo_der.position = Vector3 (0.25, 0.25, 0.45)

91 cabeza.add_child(ojo_der)

92

93 # --- ANTENAS (Cilindros finos) ---

94 var antena_izq = MeshInstance3D.new()

95 antena_izq.mesh = malla_cilindro

96 antena_izq.material_override = material_verde

97 antena_izq.scale = Vector3 (0.05, 0.4, 0.05) # Fina y larga

Informática Gráfica Ismael Sallami Moreno

1.4 Sesión 5 79

98 antena_izq.position = Vector3(-0.3, 0.4, 0)

99 antena_izq.rotation_degrees.z = 30 # Inclinación

100 cabeza.add_child(antena_izq)

101

102 var antena_der = MeshInstance3D.new()

103 antena_der.mesh = malla_cilindro

104 antena_der.material_override = material_verde

105 antena_der.scale = Vector3 (0.05, 0.4, 0.05)

106 antena_der.position = Vector3 (0.3, 0.4, 0)

107 antena_der.rotation_degrees.z = -30

108 cabeza.add_child(antena_der)

109

110 # --- EXTREMIDADES (Cilindros) ---

111 # Aquí aplicamos lo aprendido en Session 5: Reutilización

112

113 # Brazo Izquierdo

114 var brazo_izq = MeshInstance3D.new()

115 brazo_izq.mesh = malla_cilindro

116 brazo_izq.material_override = material_verde

117 brazo_izq.scale = Vector3 (0.3, 1.0, 0.3)

118 brazo_izq.position = Vector3(-0.9, 0.6, 0) # Al lado del

cuerpo

119 add_child(brazo_izq)

120

121 # Brazo Derecho

122 var brazo_der = MeshInstance3D.new()

123 brazo_der.mesh = malla_cilindro

124 brazo_der.material_override = material_verde

125 brazo_der.scale = Vector3 (0.3, 1.0, 0.3)

126 brazo_der.position = Vector3 (0.9, 0.6, 0)

127 add_child(brazo_der)

128

129 # Pierna Izquierda

130 var pierna_izq = MeshInstance3D.new()

131 pierna_izq.mesh = malla_cilindro

132 pierna_izq.material_override = material_verde

133 pierna_izq.scale = Vector3 (0.3, 0.6, 0.3)

134 pierna_izq.position = Vector3(-0.4, -0.4, 0) # Debajo del

cuerpo

135 add_child(pierna_izq)

136

137 # Pierna Derecha

138 var pierna_der = MeshInstance3D.new()

139 pierna_der.mesh = malla_cilindro

140 pierna_der.material_override = material_verde

141 pierna_der.scale = Vector3 (0.3, 0.6, 0.3)

142 pierna_der.position = Vector3 (0.4, -0.4, 0)

143 add_child(pierna_der)
� �
Informática Gráfica Ismael Sallami Moreno

1.5 Sesión 6 80

1.5 Sesión 6
Ejercicio 1.5.1

Escribe el código GDScript para adjuntar a un nodo de tipo Camera3D, de forma que en
cada frame la cámara apunte a un objeto móvil objetivo (por ejemplo un coche), con estos
requerimientos:

– La posición y el vector de velocidad del objetivo (en coordenadas de mundo)
se pueden obtener con dos funciones globales, llamadas objetivo.posicion() y
objetivo.velocidad(), ambas devuelven un objeto de tipo Vector3.

– La cámara debe situarse detrás del objetivo, de forma que el punto devuelto por
objetivo.posicion() se proyecte en el centro del viewport, y además la cámara esté
situada 3 unidades en horizontal por detrás del objetivo, y 2 unidades por encima (en el
eje Y).

Solución 1.5.1. Nuestro objetivo móvil va a ser un coche. La resolución detallada es la siguiente:

Requerimientos Geométricos:

1) Punto de Atención (Look At): La cámara debe apuntar al objetivo. Esto significa que
el eje −Z de la cámara (en Godot, la cámara ”mira” hacia −Z local) debe alinearse con el
vector que va desde la cámara hasta el objetivo. El punto p⃗obj se proyectará en el centro del
viewport.

2) Posición Relativa:
– ”Detrás” (Horizontal): 3 unidades por detrás. ”Detrás” se define en relación con

el movimiento. Si el coche se mueve hacia adelante, ”detrás” es la dirección opuesta
a la velocidad. Debemos considerar solo la componente horizontal para evitar que la
cámara se incline hacia el suelo si el coche sube una pendiente.

– ”Arriba” (Vertical): 2 unidades por encima del objetivo (eje Y global).

Fundamentación Teórica

Para resolver esto, utilizamos conceptos de Espacios Afines y Operaciones con Vectores
(tratados en el pdf ig-s03.pdf):

1) Definición de ”Atrás”: El vector velocidad v⃗obj nos da la dirección del movimiento. Para
situarnos ”detrás” horizontalmente:

– Tomamos v⃗obj y anulamos su componente Y (para que sea puramente horizontal):
d⃗hz = (vx, 0, vz).

– Normalizamos este vector para obtener una dirección unitaria: d̂hz = d⃗hz/|d⃗hz|.
– El vector ”hacia atrás” es −d̂hz.
– El desplazamiento horizontal deseado es −3 · d̂hz.

2) Composición de la Posición de la Cámara (p⃗cam):

p⃗cam = p⃗obj + (0, 2, 0)− 3 · d̂hz

Donde:
– (0, 2, 0): 2 unidades arriba.

Informática Gráfica Ismael Sallami Moreno

1.5 Sesión 6 81

– −3 · d̂hz: 3 unidades atrás.
3) Transformación de Vista (LookAt): Una vez tenemos p⃗cam, necesitamos construir la

matriz de vista. En Godot, la clase Node3D (de la cual hereda Camera3D) tiene métodos
auxiliares para esto. El método look_at(target, up) ajusta la transformación del nodo para
que mire a target manteniendo el vector up orientado hacia arriba tanto como sea posible.

Solución: Código GDScript

� �
1 extends Camera3D

2

3 # Asumimos que 'objetivo ' es un singleton (AutoLoad) o una clase

global accesible.

4 # Si no fuera global , habría que obtener la referencia al nodo (

ej. get_node (''../Coche ''))

5

6 func _process(delta: float):

7 # 1. Obtener datos del objetivo (en coordenadas de mundo)

8 # Según el enunciado , existen estas funciones globales.

9 var p_obj: Vector3 = objetivo.posicion ()

10 var v_obj: Vector3 = objetivo.velocidad ()

11

12 # 2. Calcular la dirección horizontal del movimiento

13 # Creamos un vector con la velocidad pero ignorando la

componente Y

14 var direccion_hz: Vector3 = Vector3(v_obj.x, 0.0, v_obj.z)

15

16 # IMPORTANTE: Si el coche está parado (velocidad casi 0), no

podemos normalizar

17 # (división por cero). En un caso real , mantendríamos la ú

ltima dirección válida.

18 # Para el ejercicio , asumimos movimiento o usamos una

dirección por defecto (ej. eje Z).

19 if direccion_hz.length_squared () > 0.001:

20 direccion_hz = direccion_hz.normalized ()

21 else:

22 # Fallback: si está quieto , asumimos que ''detrás'' es

el eje Z positivo (por ejemplo)

23 # O idealmente , usaríamos la orientación del nodo

objetivo (basis.z)

24 direccion_hz = Vector3(0, 0, 1)

25

26 # 3. Calcular la posición deseada de la cámara

27 # - Situada en la posición del objetivo

28 # - Desplazada 2 unidades hacia ARRIBA (Eje Y global)

29 # - Desplazada 3 unidades hacia ATRÁS (opuesto a la direcció

n horizontal)

Informática Gráfica Ismael Sallami Moreno

1.5 Sesión 6 82

30 var nueva_posicion: Vector3 = p_obj + Vector3(0, 2, 0) - (

direccion_hz * 3.0)

31

32 # 4. Aplicar la posición a la cámara

33 # Usamos global_position para asegurar que estamos en coords

de mundo

34 global_position = nueva_posicion

35

36 # 5. Orientar la cámara (Transformación de Vista)

37 # Hacemos que la cámara mire al punto objetivo.

38 # El vector ''Arriba '' (Up) suele ser el eje Y global (

Vector3.UP)

39 look_at(p_obj , Vector3.UP)
� �

Explicación detallada de la implementación

1) extends Camera3D: El script hereda de la clase base de cámaras en Godot, permitiendo
controlar la proyección y vista.

2) _process(delta): Usamos este método del bucle principal (MainLoop) porque el enunciado
pide que la cámara se actualice ”en cada frame”.

3) Cálculo del vector dirección:
– El enunciado especifica ”3 unidades en horizontal”. Esto es crucial. Si usáramos el

vector velocidad completo (incluyendo Y) para calcular el ”atrás”, y el coche subiera
una rampa muy empinada, la cámara se metería bajo tierra. Por eso proyectamos sobre
el plano XZ haciendo vobj .y = 0 y luego normalizamos v.normalized().

4) Posicionamiento (global_position):
– Calculamos la posición final sumando vectores. Matemáticamente: p⃗cam = p⃗obj +

(0, 2, 0)− 3 · d̂hz.
5) Orientación (look_at):

– Este método es fundamental en la Transformación de Vista. Recalcula la matriz de
transformación del nodo (transform) para que su eje −Z (visión) apunte a p⃗obj y su
eje Y se alinee con Vector3.UP. Esto resuelve la parte compleja de crear la matriz de
rotación ortonormal manualmente.

Informática Gráfica Ismael Sallami Moreno

1.5 Sesión 6 83

Ejercicio 1.5.2

Supongamos una escena que contiene una representación visible del marco de coordenadas del
mundo como tres flechas (roja X, verde Y y azul Z), como ocurre en las prácticas. Queremos
visualizar esa escena en pantalla, de forma que:

1) El eje Y aparezca vertical, hacia arriba, el eje X horizontal, hacia la derecha, el eje
Z horizontal, hacia la izquierda (los ejes X y Z se visualizan con la misma longitud
aparente).

2) El punto de coordenadas (0, 0,5, 0) (aparece como un disco de color morado en la figura)
debe aparecer en el centro del viewport.

3) El observador (foco de la proyección) estará a 3 unidades de distancia del punto
(0, 0,5, 0).

Escribe unos valores que podríamos usar para a, u y n de forma que se cumplan estos
requisitos. En la figura se observa una vista esquemática de cómo quedaría la figura en un
viewport cuadrado.

(0, 0,5, 0)

Y

XZ
Origen (0, 0, 0)

Solución 1.5.2. Para determinar los parámetros de la matriz de vista (a, u, n), analizamos cada
requerimiento paso a paso:

1) Determinación del punto de atención (a): El enunciado establece que el punto de
coordenadas (0, 0,5, 0) debe aparecer en el centro del viewport. Por definición, el punto de
atención a (Look-At point) es el punto hacia el que apunta la cámara y que se proyecta en
el centro del plano de imagen.
Por lo tanto:

a = (0, 0,5, 0)

2) Determinación del vector hacia arriba (u): Se requiere que el eje Y del mundo aparezca
vertical y hacia arriba en la imagen. Dado que el eje Y del mundo es (0, 1, 0), la forma más
directa de conseguir que se proyecte verticalmente es alineando el vector view-up (u) con
el eje Y del mundo (siempre que la dirección de vista no sea paralela a este eje, lo cual
verificaremos en el siguiente paso).
Por lo tanto:

u = (0, 1, 0)

3) Determinación del vector normal de vista (n): El vector n define la dirección desde
el punto de atención hacia el observador (es decir, la inversa de la dirección de la vista).
También determina la posición del observador oec mediante la relación oec = a + n.

Informática Gráfica Ismael Sallami Moreno

1.5 Sesión 6 84

Analizamos las condiciones para n = (nx, ny, nz):
– Longitud: El observador debe estar a 3 unidades de distancia de a. Como n es el

vector que une a con el observador, su norma debe ser 3:

||n|| = 3

– Orientación Horizontal: Para que el eje Y se vea perfectamente vertical y centrado,
la cámara debe estar a la misma altura o el vector de visión debe estar contenido en
un plano vertical que contenga al eje Y. Sin embargo, la condición crítica proviene de
los ejes X y Z.

– Orientación de X y Z:
– El eje X debe verse horizontal hacia la derecha.
– El eje Z debe verse horizontal hacia la izquierda.
– Ambos deben tener la misma longitud aparente.

Esto implica que el observador debe situarse en una posición simétrica respecto a los
ejes X e Z positivos (primer cuadrante del plano XZ respecto a a), de forma que la
línea de visión biseque el ángulo de 90 grados entre X y Z.
Si nos situamos en la bisectriz del primer cuadrante del plano XZ, el vector de dirección
tendrá componentes X y Z iguales y positivas. El eje X (derecha) y el eje Z (adelante)
formarán ambos un ángulo de 45◦ con el plano de proyección, proyectándose hacia
lados opuestos (derecha e izquierda) con la misma deformación (longitud aparente).
Por tanto, la dirección de n debe ser (1, 0, 1).

Calculamos n:
1) Tomamos el vector director base: d⃗ = (1, 0, 1).
2) Calculamos su norma: ||d⃗|| =

√
12 + 02 + 12 =

√
2.

3) Normalizamos y escalamos por la distancia requerida (3 unidades):

n = 3 · d⃗

||d⃗||
= 3 · (1, 0, 1)√

2
=
(

3√
2

, 0,
3√
2

)

Aproximando los valores:
3√
2

= 3
√

2
2 ≈ 2,1213

Así, n ≈ (2,12, 0, 2,12).

Resultado Final: Los valores que cumplen los requisitos son:

a = (0, 0,5, 0)

u = (0, 1, 0)

n =
(

3√
2

, 0,
3√
2

)

Informática Gráfica Ismael Sallami Moreno

1.5 Sesión 6 85

Ejercicio 1.5.3

Repite el problema anterior 6.2, pero ahora para esta vista (ver figura). Usa una rotación del
marco de vista entorno a uno de sus propios ejes.

Y

Z

X

ȯwc

Escribe los valores para a, u y n.

Solución 1.5.3. Para obtener la configuración visual mostrada en la figura, partimos de la solución
del ejercicio 6.2 y aplicamos las transformaciones necesarias.

1) Punto de atención (a): Al igual que en el ejercicio anterior, el punto (0, 0,5, 0) (disco
morado) debe aparecer en el centro del viewport. Por tanto:

a = (0, 0,5, 0)

2) Vector normal de vista (n): Observamos la orientación de los ejes X y Z:
– El eje X (rojo) apunta hacia la izquierda y abajo.
– El eje Z (azul) apunta hacia la derecha y arriba.

En el ejercicio 6.2, mirábamos desde el primer cuadrante (+X, +Z), viendo el eje X a la
derecha y Z a la izquierda. Aquí la situación horizontal se ha invertido (X a la izquierda, Z a
la derecha), lo que implica que el observador se ha movido a la posición opuesta (”detrás”
de la escena), mirando desde el cuadrante (−X,−Z).
El vector de dirección base sería (−1, 0,−1). Normalizando y aplicando la distancia de 3
unidades:

n = 3 · (−1, 0,−1)√
(−1)2 + 02 + (−1)2

= 3 ·
(
−1√

2
, 0,
−1√

2

)
Aproximando:

n ≈ (−2,12, 0,−2,12)

3) Vector hacia arriba (u): Observamos el eje Y (verde). En lugar de apuntar verticalmente
hacia arriba (como haría con u = (0, 1, 0)), apunta hacia arriba a la izquierda. Esto indica
una rotación de la cámara (Roll) alrededor del eje de visión n.
Si usáramos ubase = (0, 1, 0) desde la posición trasera, veríamos el eje Y vertical. Para que el
eje Y se incline hacia la izquierda en la pantalla, la cámara debe rotar en sentido horario
(CW). Una rotación de 45 grados en sentido horario del vector ubase alrededor del eje de
visión nos da el vector necesario.

Informática Gráfica Ismael Sallami Moreno

1.5 Sesión 6 86

Calculamos u como una combinación lineal que se incline hacia el eje Z negativo y X negativo
(para mantener la ortogonalidad con n):

u = (−1, 1, 1)

(Nota: Se puede normalizar a (−1/
√

3, 1/
√

3, 1/
√

3)).
Verificación rápida: n ·u = (−1)(−1) + (0)(1) + (−1)(1) = 1 + 0− 1 = 0. Son perpendiculares.

¿Cómo se calcula u exactamente?
El vector u (View-Up) indica la dirección de ”arriba” para la cámara. El procedimiento
ordenado para deducir u = (−1, 1, 1) es:

1) Definir la base sin rotar:
– Nos situamos ”detrás” de la escena (lado opuesto al ejercicio 6.2), ya que el eje

X va a la izquierda y el Z a la derecha.
– Vector de vista ideal: n = (−1, 0,−1).
– Vector arriba estándar: ubase = (0, 1, 0).

2) Calcular el vector ”Derecha”:

Derecha = ubase × n = (0, 1, 0)× (−1, 0,−1) = (−1, 0, 1)

Sabemos que Arriba×Atrás = Derecha. Para el caso de la izquierda sería el opuesto.
(n es atrás y u es arriba).

3) Aplicar la rotación (mezclar arriba y derecha):
– Para rotar la cámara hacia la derecha (sentido horario), sumamos el vector

arriba original y el vector derecha:

u = ubase + Derecha = (0, 1, 0) + (−1, 0, 1) = (−1, 1, 1)

– Este vector tiene componente en Y (arriba), pero también en X y Z, inclinando
el ”arriba” de la cámara hacia la derecha de la pantalla, logrando el efecto de
rotación deseado.

Valores Finales:
a = (0, 0,5, 0)

u = (−1, 1, 1) (o normalizado ≈ (−0,577, 0,577, 0,577))

n =
(
−3√

2
, 0,
−3√

2

)
≈ (−2,12, 0,−2,12)

Ejercicio 1.5.4

Escribe el código GDScript para calcular los vectores de coordenadas oec, xec, yec y zec que
definen el marco de vista a partir de los vectores de coordenadas a, u y n (todos estos vectores
de coordenadas de mundo, en objetos de tipo Vector3).

Solución 1.5.4. Para construir el marco de referencia de vista (view reference frame) a partir de los
vectores dados, seguimos el procedimiento estándar de la transformación de cámara en gráficos 3D:

1) Cálculo del origen del marco (oec): El origen del marco de cámara (posición del

Informática Gráfica Ismael Sallami Moreno

1.5 Sesión 6 87

observador) se obtiene sumando el punto de atención a y el vector normal n:

oec = a + n

2) Cálculo del eje zec: El eje zec es la dirección de la vista (normalizada) y se obtiene
normalizando el vector n:

zec = n

∥n∥

3) Cálculo del eje xec: El eje xec (derecha de la cámara) se obtiene como el producto vectorial
entre el vector hacia arriba u y el vector normal n, normalizado:

xec = u× n

∥u× n∥

4) Cálculo del eje yec: El eje yec (arriba de la cámara) se obtiene como el producto vectorial
entre zec y xec:

yec = zec × xec

El siguiente código GDScript implementa estos pasos, suponiendo que a, u y n son objetos de tipo
Vector3:

� �
1 # a, u, n: Vector3 (coordenadas de mundo)

2

3 # 1. Origen del marco de cámara

4 var o_ec : Vector3 = a + n

5

6 # 2. Eje Z (dirección de la vista , normalizado)

7 var z_ec : Vector3 = n.normalized ()

8

9 # 3. Eje X (derecha , ortogonal a u y n, normalizado)

10 var x_ec : Vector3 = u.cross(n).normalized ()

11

12 # 4. Eje Y (arriba , ortogonal a z_ec y x_ec)

13 var y_ec : Vector3 = z_ec.cross(x_ec)
� �
Este procedimiento garantiza que los vectores xec, yec y zec forman una base ortonormal adecuada
para definir el sistema de referencia de la cámara.

Ejercicio 1.5.5

Partiendo de los vectores de coordenadas oec, xec, yec y zec que se calculan en el problema
anterior, escribe el código que calcula explícitamente la matriz de vista, es una variable de
tipo Transform3D.

Solución 1.5.5. Para construir la matriz de vista (View Matrix) a partir del marco de cámara
definido por oec (origen), xec, yec y zec (vectores ortonormales), seguimos el procedimiento estándar
de gráficos 3D:

1) Definición: La matriz de vista transforma coordenadas del mundo al sistema de la cámara.
Se compone de una rotación (alineando los ejes del mundo con los de la cámara) y una

Informática Gráfica Ismael Sallami Moreno

1.5 Sesión 6 88

traslación (llevando el origen de la cámara al origen del sistema).
2) Expresión matricial:

V =


xec.x xec.y xec.z −(xec · oec)
yec.x yec.y yec.z −(yec · oec)
zec.x zec.y zec.z −(zec · oec)

0 0 0 1


3) Implementación en Godot (Transform3D): En Godot, la clase Transform3D almacena la

base (rotación) y el origen (traslación). La base se define por columnas, por lo que debemos
transponer la matriz formada por xec, yec y zec como filas.

Código GDScript:

� �
1 # Suponemos disponibles: x_ec , y_ec , z_ec , o_ec (Vector3)

2

3 # 1. Construir la base (rotación): columnas de la base son los

ejes de cámara

4 var R := Basis(x_ec , y_ec , z_ec)

5 var vista_basis := R.transposed ()

6

7 # 2. Calcular la traslación (origen) según la fórmula de la

matriz de vista

8 var d_x = -x_ec.dot(o_ec)

9 var d_y = -y_ec.dot(o_ec)

10 var d_z = -z_ec.dot(o_ec)

11 var vista_origin = Vector3(d_x , d_y , d_z)

12

13 # 3. Construir la matriz de vista final

14 var matriz_vista = Transform3D(vista_basis , vista_origin)

15

16 # La función de Transform3D lo que es empaqueta todo en un solo

objeto , en este caso , lo que hace es crear una matriz de 4x4

a partir de una matriz de 3x3 (Basis) y un vector de traslaci

ón (origin).
� �
Explicación: La matriz de vista es la inversa de la transformación de la cámara en el mundo. La
base ortonormal se transpone para invertir la rotación, y la traslación se obtiene proyectando el
origen del marco de cámara sobre cada eje y cambiando el signo, lo que equivale a trasladar el
mundo al sistema de la cámara. Usamos cross para construir el marco de referencia, y dot para
situar puntos dentro de ese marco, en este caso como lo que se busca es proyectar usamos dot.

Informática Gráfica Ismael Sallami Moreno

1.5 Sesión 6 89

Ejercicio 1.5.6

En una copia independiente del código de prácticas, modifica el nodo de la cámara orbital
simple para conseguir que el fov mínimo (vertical u horizontal) sea siempre de 75◦. Esto
servirá, por ejemplo, para ver el cubo de las prácticas siempre completo independientemente
del ancho y alto de la ventana.
Para ello:

1) Añadir al script del nodo de cámara una función que se ejecute siempre que se redi-
mensione la ventana (y al inicio).

2) En esa función, obtener el tamaño (alto y ancho) del viewport.
3) Calcular la relación de aspecto (ancho/alto).
4) Usar ajuste de la proyección en vertical si el viewport es más ancho que alto, y ajuste

en horizontal en caso contrario.

Caso A: Ancho > Alto

Mantener Altura Fijo (75◦)

Caso B: Alto > Ancho

Mantener
Anchura

Fijo (75◦)

Solución 1.5.6. Para resolver este problema, debemos manipular la propiedad keep_aspect de la
clase Camera3D en Godot. Esta propiedad determina qué eje (horizontal o vertical) mantiene el
ángulo de visión (fov) fijo cuando cambia la relación de aspecto de la ventana.

El objetivo es asegurar que el objeto siempre sea visible. Si la ventana se estrecha horizontalmente,
debemos fijar el FOV horizontal. Si se estrecha verticalmente, debemos fijar el FOV vertical.

1) Lógica del algoritmo:
– Obtenemos el tamaño del viewport: w (ancho) y h (alto).
– Calculamos la relación de aspecto r = w/h.
– Si r ≥ 1 (formato apaisado o cuadrado): El ancho es suficiente para contener la escena

si fijamos la altura. Usamos KEEP_HEIGHT.
– Si r < 1 (formato vertical o ”retrato”): El ancho es el factor limitante. Para evitar

que se recorte la escena lateralmente, debemos fijar el ángulo horizontal. Usamos
KEEP_WIDTH.

2) Implementación en GDScript: Añadimos la función _actualiza_proyeccion y la conec-
tamos a la señal size_changed del viewport raíz en la función _ready.

� �
1 extends Camera3D

2

3 # -------------

4 # constantes y variables de instancia

5

6 const at := 2.5 # angulo de rot. con teclas

7 const ar := 0.5 # angulo de rot. con raton

Informática Gráfica Ismael Sallami Moreno

1.5 Sesión 6 90

8 var bdrp := false # boton derecho del raton presionado si

/no

9 var dz := 3.0 # distancia en Z de la camara al origen

10 var dxy := Vector2(0.0, 0.0) # angulos hor. y vert.

11

12 # -------------

13 # actualiza la variable 'transform ' de este nodo camara

14

15 func _actualiza_transf_vista() -> void :

16 var ahr := ((45.0+ float(dxy.x))*2.0*PI)/360.0

17 var avr := ((30.0+ float(dxy.y))*2.0*PI)/360.0

18 var tras := Transform3D ().translated(Vector3(0.0,

0.0, dz))

19 var rotx := Transform3D ().rotated(Vector3.RIGHT , -avr

)

20 var roty := Transform3D ().rotated(Vector3.UP, ahr)

21 transform = roty*rotx*tras

22

23 # -------------

24 # NUEVA FUNCION: Ajuste dinamico de la proyeccion (Problema

6.6)

25 func _actualiza_proyeccion () -> void:

26 # 1. Obtener tamano del viewport

27 var vp_size := get_viewport ().size

28

29 # Evitamos division por cero si la ventana se minimiza

completamente

30 if vp_size.y == 0: return

31

32 # 2 y 3. Calcular relacion de aspecto (ancho / alto)

33 var aspect_ratio := float(vp_size.x) / float(vp_size.y)

34

35 # 4. Ajuste segun la forma de la ventana

36 if aspect_ratio < 1.0:

37 # Si es mas alto que ancho (Portrait), fijamos el

ancho

38 keep_aspect = Camera3D.KEEP_WIDTH

39 else:

40 # Si es mas ancho que alto (Landscape), fijamos el

alto (por defecto)

41 keep_aspect = Camera3D.KEEP_HEIGHT

42

43 # Aseguramos que el FOV base sea siempre 75 grados

44 fov = 75.0

45

46 # -------------

47 func _ready () -> void :

48 _actualiza_transf_vista ()

Informática Gráfica Ismael Sallami Moreno

1.5 Sesión 6 91

49

50 # Conectamos la senal de redimensionado a nuestra nueva

funcion

51 get_tree ().root.size_changed.connect(

_actualiza_proyeccion)

52

53 # Llamamos a la funcion una vez al inicio para

configurar el estado inicial

54 _actualiza_proyeccion ()

55

56 # -------------

57 # procesa evento de entrada (sin cambios respecto al

original)

58

59 func _input(event : InputEvent):

60 var av : bool = true

61

62 if event is InputEventKey and event.pressed:

63 match event.keycode:

64 KEY_UP: dxy += Vector2(0, -at)

65 KEY_DOWN: dxy += Vector2(0, +at)

66 KEY_RIGHT: dxy += Vector2(-at, 0)

67 KEY_LEFT: dxy += Vector2(at, 0)

68 KEY_MINUS , KEY_PAGEDOWN , KEY_KP_SUBTRACT: dz *=

1.05

69 KEY_PLUS , KEY_PAGEUP , KEY_KP_ADD: dz = max(dz

/1.05, 0.1)

70 _: av = false

71

72 elif event is InputEventMouseButton:

73 match event.button_index:

74 MOUSE_BUTTON_RIGHT:

75 bdrp = event.pressed

76 av = false

77 MOUSE_BUTTON_WHEEL_DOWN: dz *= 1.05

78 MOUSE_BUTTON_WHEEL_UP: dz = max(dz/1.05, 0.1

)

79 _: av = false

80

81 elif event is InputEventMouseMotion and bdrp:

82 dxy += ar * Vector2(-event.relative.x, event.

relative.y)

83

84 else:

85 av = false

86

87 if av:

88 _actualiza_transf_vista()
� �
Informática Gráfica Ismael Sallami Moreno

1.5 Sesión 6 92

Para simplificar, lo que se hace es añadir esta función y usarla en el _ready y cada vez que
se redimensiona la ventana:

� �
1 # NUEVA FUNCION: Ajuste dinamico de la proyeccion (Problema

6.6)

2 func _actualiza_proyeccion () -> void:

3 # 1. Obtener tamano del viewport

4 var vp_size := get_viewport ().size

5

6 # Evitamos division por cero si la ventana se minimiza

completamente

7 if vp_size.y == 0: return

8

9 # 2 y 3. Calcular relacion de aspecto (ancho / alto)

10 var aspect_ratio := float(vp_size.x) / float(vp_size.y)

11

12 # 4. Ajuste segun la forma de la ventana

13 if aspect_ratio < 1.0:

14 # Si es mas alto que ancho (Portrait), fijamos el

ancho

15 keep_aspect = Camera3D.KEEP_WIDTH

16 else:

17 # Si es mas ancho que alto (Landscape), fijamos el

alto (por defecto)

18 keep_aspect = Camera3D.KEEP_HEIGHT

19

20 # Aseguramos que el FOV base sea siempre 75 grados

21 fov = 75.0
� �
Ejercicio 1.5.7

Se desea calcular los parámetros de la matriz de proyección perspectiva (l, r, b, t, n, f) para
visualizar una escena compuesta por un cubo de lado s.
Datos conocidos:

– El cubo tiene lado s.
– El centro del cubo está en coordenadas del mundo c = (cx, cy, cz).
– La cámara (observador) se sitúa en oec = (cx, cy, cz + s + 2).
– La cámara mira hacia el centro del cubo (a = c) y el vector arriba es (0, 1, 0).

Requerimientos:
– Ajustar la vista para que el objeto se vea lo más grande posible sin recortarse (zoom

máximo).
– Ajustar los planos de recorte near y far lo más ceñidos posible al objeto.
– Mantener la proporción (sin deformación) en un viewport cuadrado.

Solución 1.5.7. Para resolver esto, imaginemos que trasladamos todo el sistema para que la cámara
sea el centro del universo (0, 0, 0). Analizaremos distancias relativas desde la cámara hasta el objeto.

Informática Gráfica Ismael Sallami Moreno

1.5 Sesión 6 93

1) Paso 1: Entender la posición relativa (Distancia D).
La cámara y el cubo están alineados en los ejes X e Y (tienen las mismas coordenadas cx, cy).
La única diferencia es la profundidad (eje Z).
Calculamos la distancia D desde el ojo hasta el centro del cubo:

D = Zojo − Zcubo = (cz + s + 2)− cz = s + 2

La cámara mira hacia el eje −Z, por lo que el cubo está flotando delante de nosotros a una
distancia de s + 2 unidades.

2) Paso 2: Calcular los planos de profundidad (n y f).
Los parámetros n (near/cerca) y f (far/lejos) definen qué ”rebanada” del mundo ve la
cámara. Queremos que esta rebanada empiece justo en la cara frontal del cubo y termine
justo en la cara trasera.
Sabemos que el cubo mide s de profundidad. Por tanto, desde su centro, se extiende s/2
hacia adelante (hacia la cámara) y s/2 hacia atrás.

– Plano Near (n): Es la distancia desde el ojo hasta la cara más cercana del cubo.

n = Distancia al centro−Mitad del cubo

n = (s + 2)− s

2 = s

2 + 2

– Plano Far (f): Es la distancia desde el ojo hasta la cara más lejana del cubo.

f = Distancia al centro + Mitad del cubo

f = (s + 2) + s

2 = 3s

2 + 2

3) Paso 3: Calcular el marco de la ventana (l, r, b, t).
Estos parámetros definen el tamaño del ”marco de la ventana” a través del cual miramos,
situado en la distancia n.
Queremos que el objeto ocupe toda la pantalla. En perspectiva, si la cara delantera del cubo
entra justa en la ventana, la cara trasera (que está más lejos) se verá más pequeña y entrará
seguro. Por tanto, ajustamos la ventana al tamaño de la cara delantera.
La cara delantera del cubo es un cuadrado de lado s. Como la cámara está centrada:

– La mitad del cubo va hacia la derecha y la mitad hacia la izquierda.
– La mitad va hacia arriba y la mitad hacia abajo.

Por tanto, en el plano de proyección (que hemos situado pegado a la cara delantera, en n):

r = mitad del ancho = s

2

l = −mitad del ancho = −s

2

t = mitad de la altura = s

2

b = −mitad de la altura = −s

2
4) Esquema Gráfico de la Solución:

El siguiente diagrama muestra la vista lateral (perfil). El ojo está en el origen. El cubo (azul)
está delimitado por los planos n y f (rojo). Las líneas discontinuas muestran el campo de

Informática Gráfica Ismael Sallami Moreno

1.5 Sesión 6 94

visión.

Distancia (−Zec)

Yec

Ojo Cubo Lado s

n f

n = s/2 + 2
f = 3s/2 + 2

t = s/2

b = −s/2

5) Resultado Final: Los valores calculados únicamente en función de s son:

n = s

2 + 2, f = 3s

2 + 2

r = s

2 , l = −s

2 , t = s

2 , b = −s

2

Ejercicio 1.5.8

Repetimos el problema 6.7 con los mismos requerimientos y suposiciones, pero ahora la escena
está contenida en una esfera de radio r con centro en c = (cx, cy, cz), en lugar de un cubo.
Datos y Adaptación del Enunciado:

– Objeto: Esfera de radio r.
– Centro: c = (cx, cy, cz).
– Cámara: Para mantener la equivalencia con el ejercicio anterior (donde la distancia

dependía del tamaño del objeto s), sustituimos el lado del cubo s por el diámetro de la
esfera 2r.

– Posición de la cámara: oec = (cx, cy, cz + 2r + 2).
– Orientación: Mira hacia c, vector arriba (0, 1, 0).

Requerimientos:
– n y f ajustados al máximo al objeto.
– Tamaño aparente máximo sin recortar (la esfera debe entrar completa en la imagen).
– Viewport cuadrado (aspect ratio 1).

Solución 1.5.8. Procederemos de forma análoga al caso del cubo, utilizando la caja englobante
(bounding box) de la esfera para asegurar que esta quede completamente dentro del volumen de
vista. Una esfera de radio r cabe perfectamente dentro de un cubo de lado s = 2r.

1) Paso 1: Análisis de Distancias en el Eje Z.
Transformamos el centro de la esfera a coordenadas de cámara (poniendo la cámara en el

Informática Gráfica Ismael Sallami Moreno

1.5 Sesión 6 95

origen). La distancia D desde el ojo hasta el centro c es la diferencia en la coordenada Z:

D = Zojo − Zcentro = (cz + 2r + 2)− cz = 2r + 2

La esfera se extiende una distancia r (el radio) hacia adelante y hacia atrás desde su centro.
2) Paso 2: Cálculo de los planos de recorte (n y f).

– Plano Near (n): Debe situarse justo delante del punto más cercano de la esfera.

n = D − radio = (2r + 2)− r = r + 2

– Plano Far (f): Debe situarse justo detrás del punto más lejano de la esfera.

f = D + radio = (2r + 2) + r = 3r + 2

3) Paso 3: Cálculo de la ventana de proyección (l, r, b, t).
Para asegurar que la esfera se vea completa y lo más grande posible, ajustaremos el frustum
para que englobe el cuadrado frontal de la ”caja imaginaria” que contiene a la esfera.
Si el plano de proyección está en n, la sección de la caja englobante en ese plano tiene una
altura y anchura igual al diámetro de la esfera (2r). Sin embargo, debido a la perspectiva,
si ajustamos la ventana para cubrir el tamaño del objeto en el plano near, garantizamos
que cualquier parte del objeto detrás de ese plano también será visible (ya que el frustum se
ensancha).
La ”cara delantera” de nuestra caja imaginaria en z = −n tendría un tamaño de 2r × 2r.
Como la cámara apunta al centro:

– Ancho total = 2r =⇒ Del centro a la derecha = r.
– Alto total = 2r =⇒ Del centro hacia arriba = r.

Por tanto:
r = r (coincide con el radio)

t = r

l = −r

b = −r

Nota: Al usar t = r en el plano n, estamos definiendo un frustum que pasa exactamente por
los bordes de la esfera en su punto más cercano. Como la esfera se curva ”hacia adentro”,
esto garantiza holgura y que la esfera completa sea visible.

4) Representación Gráfica:
El esquema muestra la esfera (azul) y cómo los planos n y f la encierran (rojo).

Informática Gráfica Ismael Sallami Moreno

1.5 Sesión 6 96

−Zec

Yec

Ojo c

r

n f

n = r + 2
f = 3r + 2

t = r

5) Resumen de resultados: Los parámetros en función de r son:

n = r + 2, f = 3r + 2

rparam = r, l = −r, t = r, b = −r

(Donde rparam es el parámetro right del frustum y r es el radio de la esfera).

Ejercicio 1.5.9

Repetimos el problema 6.7 (visualización de un cubo de lado s), con los mismos requerimientos
de optimización (tamaño máximo, sin recortes, n y f ajustados), pero con una diferencia
importante: El viewport (la ventana donde se dibuja la imagen) ya no es necesariamente
cuadrado. Tiene dimensiones de w píxeles de ancho y h píxeles de alto.
Datos conocidos:

– Objeto: Cubo de lado s, centrado en c.
– Cámara: Posición oec = (cx, cy, cz + s + 2), mirando a c.
– Viewport: Resolución w × h. Relación de aspecto aspect = w/h.

Objetivo: Calcular n, f, l, r, b, t para que el cubo llene la pantalla lo máximo posible sin
perder la proporción (sin deformarse) y sin recortarse.

Solución 1.5.9. Este problema introduce el concepto de Relación de Aspecto (Aspect Ratio).
Si la ventana de nuestro programa es rectangular, el volumen de vista (frustum) también debe ser
rectangular con la misma proporción, o de lo contrario el cubo se verá estirado o aplastado.

1) Paso 1: Planos de profundidad (n y f).
La forma del viewport (rectangular o cuadrada) no afecta a la profundidad. La distancia de
la cámara al objeto sigue siendo la misma que en el problema 6.7.
Distancia al centro: D = s + 2.
Los planos n y f dependen solo de la coordenada Z del cubo:

n = s

2 + 2

Informática Gráfica Ismael Sallami Moreno

1.5 Sesión 6 97

f = 3s

2 + 2

(Estos valores son idénticos al problema 6.7).
2) Paso 2: Relación de Aspecto.

Definimos la relación de aspecto del viewport como:

a = ancho
alto = w

h

Para evitar deformaciones, las dimensiones físicas de la ventana de proyección (r − l y t− b)
deben mantener esta misma proporción:

r − l

t− b
= 2r

2t
= r

t
= a =⇒ r = t · a

(Asumiendo simetría r = −l y t = −b).
3) Paso 3: Cálculo de la ventana (l, r, b, t).

La cara del cubo que debemos encuadrar es un cuadrado de lado s. Tenemos que meter
ese cuadrado de tamaño s× s dentro de un rectángulo de proporción w × h.
Debemos distinguir dos casos posibles para garantizar que el cubo entre entero (”tamaño
aparente mayor posible” significa ajustar a la dimensión más restrictiva).
CASO A: Viewport Apaisado o ”Landscape” (w ≥ h)

– La ventana es más ancha que alta.
– Si ajustamos el ancho de la ventana al ancho del cubo (2r = s), la altura de la ventana

(2t) sería proporcionalmente menor a s, y cortaríamos el cubo por arriba y abajo.
– Solución: El factor limitante es la altura. Debemos igualar la altura de la ventana a

la altura del cubo.
t = s

2 , b = −s

2
– El ancho se ajusta automáticamente para mantener la proporción (será mayor que s,

dejando espacio libre a los lados):

r = t · w

h
= s

2 ·
w

h

l = −r = −s

2 ·
w

h

CASO B: Viewport Vertical o ”Portrait” (w < h)
– La ventana es más alta que ancha.
– Si ajustamos la altura de la ventana a la altura del cubo (2t = s), el ancho (2r) sería

menor que s, y cortaríamos el cubo por los lados.
– Solución: El factor limitante es el ancho. Debemos igualar el ancho de la ventana al

ancho del cubo.
r = s

2 , l = −s

2
– La altura se ajusta automáticamente (será mayor que s, dejando espacio libre arriba y

abajo):
t = r

a
= r · h

w
= s

2 ·
h

w

b = −t = −s

2 ·
h

w

4) Resumen Gráfico de los Casos:

Informática Gráfica Ismael Sallami Moreno

1.5 Sesión 6 98

Caso A: w > h (Apaisado)
Ventana

Cubo s× s 2t = s

Caso B: w < h (Vertical)
Ventana

Cubo

2r = s

5) Resultado General Unificado: Podemos expresar la solución usando la función máximo
para cubrir ambos casos:

n = s

2 + 2, f = 3s

2 + 2

r = s

2 ·máx
(

1,
w

h

)
, t = s

2 ·máx
(

1,
h

w

)
l = −r, b = −t

Ejercicio 1.5.10

Alta complejidad. Posicionamiento de cámara dado un FOV (β).
Repetimos el problema 6.7 (cubo de lado s centrado en c), manteniendo los requerimientos de
optimización (viewport cuadrado, sin recortes, n máximo, f mínimo).
Nueva condición: En lugar de darnos la posición de la cámara, se nos da el ángulo de
apertura vertical (Field of View) β. Debemos calcular:

1) La coordenada Z de la posición del observador (oec), sabiendo que ox = cx y oy = cy.
2) Los parámetros de la proyección l, r, t, b, n, f en función de β, s y c.

Solución 1.5.10. Este problema es ”inverso” al anterior en cierto sentido. Antes fijábamos la distancia
y calculábamos qué apertura necesitábamos (implícitamente). Ahora, fijamos la apertura (el ángulo
de la lente) y tenemos que calcular a qué distancia ponernos para que el cubo llene la pantalla
perfectamente.

1) Paso 1: Entender la geometría del FOV (β).
El ángulo β es la apertura total vertical. La mitad de ese ángulo es β/2. En un triángulo
rectángulo formado por la línea de visión, el plano de proyección y el borde superior del
frustum:

tan(β/2) = altura del marco
distancia al marco = t

n

Queremos que el cubo llene la pantalla. Esto ocurre cuando el ”marco” de visión en el plano
más cercano (n) coincide exactamente con la cara delantera del cubo.
La cara delantera del cubo tiene altura s. Por tanto, desde el centro hacia arriba mide s/2.
Esto fija nuestro valor de t:

t = s

2
2) Paso 2: Calcular la distancia al plano Near (n).

Sustituimos t en la ecuación del FOV y despejamos n:

tan(β/2) = s/2
n

Informática Gráfica Ismael Sallami Moreno

1.5 Sesión 6 99

n = s/2
tan(β/2) = s

2 · cot(β/2)

Ahora ya sabemos cuánto espacio debe haber entre el ojo y la cara delantera del cubo (n).
3) Paso 3: Calcular la posición de la cámara (oz).

Sabemos dónde está el cubo en el mundo (en cz).
– El centro del cubo está en cz.
– La cara delantera está en cz + s/2 (hacia nosotros).
– El ojo está una distancia n más allá de la cara delantera.

oz = Posición cara delantera + n

oz = (cz + s

2) + n

Sustituyendo el valor de n calculado antes:

oz = cz + s

2 + s

2 cot(β/2) = cz + s

2

(
1 + cot

(
β

2

))
Por tanto, la posición del observador es:

oec =
(

cx, cy, cz + s

2

(
1 + cot

(
β

2

)))
4) Paso 4: Calcular el resto de parámetros (f, l, r, b).

– f (Far): Es la distancia desde el ojo hasta la cara trasera. La cara trasera está a una
distancia s (la profundidad del cubo) más lejos que la cara delantera (n).

f = n + s

f = s

2 cot(β/2) + s

– t, b, l, r: Como el viewport es cuadrado (según enunciado 6.7) y queremos ajustar a la
cara delantera (s× s):

t = s

2

b = −s

2

r = s

2

l = −s

2
5) Esquema Gráfico:

El diagrama muestra cómo el ángulo β determina la distancia n para que el frustum coincida
con la altura s/2.

Informática Gráfica Ismael Sallami Moreno

1.5 Sesión 6 100

−Zec (Distancia)

Yec

Ojo (oec) β Cubo

n f

t = s/2

n

Cateto adyacente (n)

O
pu

es
to

(s
/
2)

6) Resumen de Fórmulas:

oz = cz + s

2

(
1 + cot β

2

)
n = s

2 cot β

2
f = n + s

r = t = s

2 , l = b = −s

2

Informática Gráfica Ismael Sallami Moreno

1.6 Sesión 7 101

1.6 Sesión 7
Ejercicio 1.6.1

Implementación de Componentes Especulares (Phong y Blinn-Phong).
Escribe el código en GDScript para dos funciones que calculen la reflectividad debida a la
componente pseudo-especular de los modelos de iluminación local:

1) Modelo de Phong: Evaluar la expresión fph (Ecuación 6).
2) Modelo de Blinn-Phong: Evaluar la expresión fbp (Ecuación 7).

Ambas funciones recibirán como parámetros:
– Los vectores unitarios: Normal en el punto (np), vector hacia el observador (v) y vector

hacia la fuente de luz (li).
– El exponente de brillo e (shininess).
– El coeficiente especular ks (o kph/kbp).

La función debe devolver un valor de tipo float que represente la intensidad de la luz reflejada
especularmente.

Superficie
p

np

li

v

ri

Phong: α = ∠(ri, v)
hi

Blinn: γ = ∠(np, hi)

Figura 1.1: Esquema de vectores para Phong (ri) y Blinn-Phong (hi).

Solución 1.6.1. A continuación se detalla el procedimiento geométrico y la implementación en
código GDScript para ambos modelos.

1) Modelo de Sombreado de Phong (fph)
El modelo de Phong calcula el brillo especular basándose en el ángulo entre el vector de
visión v y el vector de reflexión perfecta de la luz ri.
Fórmulas requeridas:

– Vector de reflexión: ri = 2(np · li)np − li.
– Condición de luz incidente: di = 1 si np · li > 0, de lo contrario 0.
– Intensidad: I = kph · (máx(0, ri · v))e.

Código GDScript:

� �
1 func calcular_phong_especular(n: Vector3 , v: Vector3 , l:

Vector3 , e: float , k_ph: float) -> float:

2 # 1. Calcular el producto punto entre la normal y la

luz (Lambert)

3 var n_dot_l : float = n.dot(l)

4

5 # 2. Si la luz está detrás de la superficie , no hay

especularidad

Informática Gráfica Ismael Sallami Moreno

1.6 Sesión 7 102

6 if n_dot_l <= 0.0:

7 return 0.0

8

9 # 3. Calcular el vector reflejado r

10 # Fórmula: r = 2 * (n . l) * n - l

11 # En GDScript se puede usar reflect (), pero ojo:

reflect devuelve

12 # el vector reflejado dada la dirección incidente y la

normal.

13 # La fórmula manual es más explícita para teoría.

14 var r : Vector3 = (2.0 * n_dot_l * n - l).normalized ()

15

16 # 4. Calcular el factor especular (r . v)^e

17 var r_dot_v : float = max(0.0, r.dot(v))

18 var specular : float = pow(r_dot_v , e)

19

20 # 5. Devolver intensidad final ponderada por k_ph

21 return k_ph * specular
� �
2) Modelo de Blinn-Phong (fbp)

El modelo de Blinn-Phong optimiza el cálculo y suaviza el resultado utilizando el vector
intermedio o halfway vector hi, que es la bisectriz entre la luz li y la visión v.
Fórmulas requeridas:

– Vector Halfway: hi = li+v
||li+v|| .

– Intensidad: I = kbp · (np · hi)e.
Código GDScript:

� �
1 func calcular_blinn_phong_especular(n: Vector3 , v: Vector3 ,

l: Vector3 , e: float , k_bp: float) -> float:

2 # 1. Calcular el producto punto N.L para descartar luz

trasera

3 var n_dot_l : float = n.dot(l)

4

5 if n_dot_l <= 0.0:

6 return 0.0

7

8 # 2. Calcular el vector halfway (bisectriz) h

9 # Es la suma de L y V, normalizada

10 var h : Vector3 = (l + v).normalized ()

11

12 # 3. Calcular el producto punto entre la normal y el

halfway vector

13 var n_dot_h : float = max(0.0, n.dot(h))

14

15 # 4. Elevar a la potencia (exponente de brillo)

16 var specular : float = pow(n_dot_h , e)

Informática Gráfica Ismael Sallami Moreno

1.6 Sesión 7 103

17

18 # 5. Devolver resultado ponderado

19 return k_bp * specular
� �
Nota técnica: En GDScript, la clase Vector3 asume que los vectores ya están normalizados si el
enunciado dice ”vectores unitarios”. Si no se garantiza, se debería llamar a .normalized() sobre los
parámetros de entrada antes de operar.

Ejercicio 1.6.2

Cálculo de máximos de intensidad y visibilidad en una esfera.
Supongamos una esfera de radio unidad centrada en el origen.

– Se ilumina con una fuente de luz puntual en p = (0, 2, 0).
– El observador está situado en o = (2, 0, 0).

Determinar razonadamente el punto de la superficie donde el brillo será máximo y si dicho
punto es visible para el observador para los siguientes casos:

1) Componente difusa (Lambertiana).
2) Componente pseudo-especular de Phong.
3) Componente pseudo-especular de Blinn-Phong.

X

Y

C(0, 0)

Luz (0, 2)

Obs (2, 0)

Pdif
Pesp

n

Figura 1.2: Diagrama de la escena en el plano XY (z = 0).

Solución 1.6.2. Analizaremos cada caso paso a paso. Dado que tanto la luz como el observador
están en el plano XY (z = 0) y la esfera está centrada en el origen, los puntos de máximo brillo
estarán necesariamente en el círculo máximo del plano XY .

Datos geométricos generales para un punto P (x, y, z) en la superficie de la esfera unitaria:

– Radio R = 1, Centro C = (0, 0, 0).
– La normal en la superficie es np = P − C = (x, y, z).
– Vector hacia la luz: l = normalizar(p− P).
– Vector hacia el observador: v = normalizar(o− P).

Condición de Visibilidad: Un punto P es visible si el ángulo entre la normal np y el vector de
visión v es menor de 90 grados, es decir, np · v > 0.

Informática Gráfica Ismael Sallami Moreno

1.6 Sesión 7 104

Analicemos el horizonte de visibilidad para el observador en (2, 0, 0):

vaprox ≈ (2, 0, 0)− (x, y, z) = (2− x,−y,−z)

np · vaprox ∝ (x, y, z) · (2− x,−y,−z) = 2x− (x2 + y2 + z2) = 2x− 1

La condición np · v > 0 =⇒ 2x− 1 > 0 =⇒ x > 0,5. Cualquier punto con coordenada x ≤ 0,5
está oculto por el horizonte de la esfera.

1) Componente Difusa (Lambertiana)
La intensidad difusa es proporcional a np · l. El brillo es máximo cuando la normal apunta
directamente a la luz (np ∥ l).

– Dirección desde el centro a la luz: (0, 2, 0)− (0, 0, 0) = (0, 2, 0).
– El punto de la superficie en esa dirección es Pdif = (0, 1, 0).
– Visibilidad: La coordenada x de Pdif es 0.
– Como 0 ≤ 0,5, el punto NO es visible. Está en la parte superior de la esfera, pero el

observador, situado a la derecha, solo ve hasta x > 0,5.
2) Componente Pseudo-especular (Phong)

La intensidad es proporcional a (r · v)e, donde r es el reflejo de la luz sobre la normal. El
máximo ocurre cuando r = v (reflexión perfecta). Esto implica que la normal np debe ser la
bisectriz del ángulo formado por el vector luz l y el vector visión v.
Debido a la simetría del problema (Luz en eje Y, Observador en eje X, distancias iguales al
origen), el punto debe estar en la bisectriz del primer cuadrante (x = y).

– Punto en la esfera a 45 grados: Pesp = (cos(45◦), sin(45◦), 0) =
(√

2
2 ,

√
2

2 , 0
)
≈

(0,707, 0,707, 0).
– Comprobación geométrica: La normal en este punto apunta a (1, 1). La luz está en

(0, 2) y el ojo en (2, 0). El vector normal divide simétricamente el ángulo entre la luz y
el ojo.

– Visibilidad: La coordenada x de Pesp es 0,707.
– Como 0,707 > 0,5, el punto SÍ es visible. El brillo especular aparecerá en el ”hombro”

de la esfera mirando hacia el observador.
3) Modelo de Blinn-Phong

La intensidad es proporcional a (np · h)e, donde h (halfway vector) es la bisectriz entre l y v.
El máximo ocurre cuando la normal np coincide con h.

– Geométricamente, la condición ”la normal coincide con la bisectriz de L y V” es idéntica
a la condición de reflexión perfecta del modelo de Phong descrita arriba.

– Por tanto, el punto de máximo brillo es el mismo: Pbp =
(√

2
2 ,

√
2

2 , 0
)

.
– Visibilidad: Al ser el mismo punto, SÍ es visible.

Informática Gráfica Ismael Sallami Moreno

1.6 Sesión 7 105

Ejercicio 1.6.3

Evaluación de la BRDF de Microfacetas (GGX).
Escribe el código en GDScript de una función para calcular la reflectividad debida a la BRDF
de microfacetas GGX, evaluando la expresión de fggx (Ecuación 10).
La función recibirá los siguientes parámetros:

– Vectores unitarios: Dirección de iluminación (wi), dirección de visión (wo), tangente X
(tx), tangente Y (ty) y normal de la macrosuperficie (nx).

– Valores de rugosidad: αx y αy (tipo float).
La función debe devolver un valor de tipo float.

Macrosuperficie

nxwi

wo

m = h

h = wi+wo
||wi+wo||

Figura 1.3: Geometría de microfacetas: El vector h actúa como la normal de la
microfaceta (m) que refleja wi hacia wo.

Solución 1.6.3. Para implementar la BRDF GGX completa, debemos desglosar la Ecuación 10 en
sus tres componentes principales: la Distribución de Normales (D), el Enmascaramiento-Sombreado
(G) y el término de Fresnel (F).

1) Cálculo del Vector Halfway (h): Es la bisectriz entre el vector de luz y el de visión.
Representa la orientación que debe tener una microfaceta para reflejar la luz perfectamente
hacia el observador.

h = wi + wo

||wi + wo||

2) Distribución de Normales Anisotrópica (D): Evaluamos la probabilidad de que una
microfaceta esté alineada con h. Usamos la fórmula GGX anisotrópica (Ecuación de transpa-
rencia 75):

D(h) = 1

παxαy

(
(h·tx

αx
)2 + (h·ty

αy
)2 + (h · nx)2

)2

3) Enmascaramiento y Sombreado (G2): Usamos la aproximación Height Correlated
Masking and Shadowing (Ecuación de transparencia 77). Se define mediante una función
auxiliar Λ(w):

Λ(w) = 1
2

(
−1 +

√
1 +

α2
xx2 + α2

yy2

z2

)
Donde x, y, z son las proyecciones del vector w sobre tx, ty, nx.

G2 = 1
1 + Λ(wi) + Λ(wo)

4) Término de Fresnel (F): Usamos la aproximación de Schlick (Ecuación de transparencia

Informática Gráfica Ismael Sallami Moreno

1.6 Sesión 7 106

78). Aunque el enunciado no proporciona el índice de refracción (f0), es necesario para
la ecuación. Asumiremos un valor estándar de 0,04 (dieléctrico común) para completar el
cálculo.

F ≈ f0 + (1− f0)(1− (wi · h))5

5) Combinación Final (fggx):

fggx = F ·D ·G2

4(wi · nx)(wo · nx)

Implementación en GDScript:

� �
1 func calcular_brdf_ggx(wi: Vector3 , wo: Vector3 , tx: Vector3 , ty

: Vector3 , nx: Vector3 , ax: float , ay: float) -> float:

2 # 1. Calcular el vector Halfway (h)

3 var h: Vector3 = (wi + wo).normalized ()

4

5 # Pre-cálculo de productos punto necesarios

6 var n_dot_wi = max (0.0001 , nx.dot(wi)) # Evitar división por

cero

7 var n_dot_wo = max (0.0001 , nx.dot(wo))

8 var n_dot_h = max(0.0, nx.dot(h))

9 var h_dot_wi = max(0.0, h.dot(wi))

10

11 # Proyecciones para anisotropía

12 var h_dot_tx = h.dot(tx)

13 var h_dot_ty = h.dot(ty)

14

15 # 2. Calcular Distribución D (GGX Anisotrópica)

16 var term_x = pow(h_dot_tx / ax, 2)

17 var term_y = pow(h_dot_ty / ay, 2)

18 var term_z = pow(n_dot_h , 2)

19

20 var denom_d = PI * ax * ay * pow(term_x + term_y + term_z ,

2)

21 var D = 1.0 / max (0.0001 , denom_d)

22

23 # 3. Calcular Geometría G2 (Height Correlated)

24 # Función Lambda auxiliar inline para wi

25 var wi_x = wi.dot(tx) * ax

26 var wi_y = wi.dot(ty) * ay

27 var wi_z = n_dot_wi

28 var lambda_wi = 0.5 * (-1.0 + sqrt (1.0 + (pow(wi_x , 2) + pow

(wi_y , 2)) / pow(wi_z , 2)))

29

30 # Función Lambda auxiliar inline para wo

31 var wo_x = wo.dot(tx) * ax

32 var wo_y = wo.dot(ty) * ay

33 var wo_z = n_dot_wo

Informática Gráfica Ismael Sallami Moreno

1.7 Sesión 8 107

34 var lambda_wo = 0.5 * (-1.0 + sqrt (1.0 + (pow(wo_x , 2) + pow

(wo_y , 2)) / pow(wo_z , 2)))

35

36 var G2 = 1.0 / (1.0 + lambda_wi + lambda_wo)

37

38 # 4. Calcular Fresnel F (Aproximación de Schlick)

39 var f0 = 0.04 # Valor asumido para dieléctricos si no se

provee

40 var F = f0 + (1.0 - f0) * pow (1.0 - h_dot_wi , 5)

41

42 # 5. Resultado final combinado

43 var numerador = F * D * G2

44 var denominador = 4.0 * n_dot_wi * n_dot_wo

45

46 return numerador / max (0.0001 , denominador)
� �

1.7 Sesión 8
Ejercicio 1.7.1

Supongamos que se desea crear una malla indexada para un cubo, de forma que deseamos
aplicar una textura que incluya las caras de un dado. Para ello disponemos de una imagen de
textura que tiene una relación de aspecto 4:3.

1) Describe razonadamente cuántos vértices (como mínimo) tendrá el modelo.
2) Escribe la tabla de coordenadas de vértices, la tabla de coordenadas de textura y la

tabla de triángulos. Ten en cuenta que el cubo tiene lado unidad y su centro está en
(0,5, 0,5, 0,5).

3) Dibuja un esquema de la textura en la cual cada vértice del modelo aparezca etiquetado
con su número de vértice más sus coordenadas de textura.

Solución 1.7.1. La resolución del ejercicio es la siguiente:
1) Número de Vértices del Modelo

Aunque un cubo geométrico estándar tiene 8 vértices espaciales (esquinas), en informática
gráfica, un vértice en una malla indexada se define como una tupla única de atributos:
(x, y, z, u, v, . . .). Si un mismo punto geométrico (esquina del cubo) necesita tener dos
coordenadas de textura distintas (por ejemplo, en una costura donde la textura se corta), el

Informática Gráfica Ismael Sallami Moreno

1.7 Sesión 8 108

vértice debe duplicarse.
Observando la distribución de la textura en cruz proporcionada en las diapositivas, la imagen
tiene un aspect ratio 4:3, lo que implica una rejilla de 4× 3 caras. La disposición es:

– Fila superior: Cara 5.
– Fila media: Caras 6, 3, 1, 4.
– Fila inferior: Cara 2.

Para calcular el número mínimo de vértices, analizamos la conectividad en el espacio UV:
– Si tratamos cada cara como un cuadrado independiente, tendríamos 6×4 = 24 vértices.
– Restamos los vértices que se comparten en las aristas continuas en la textura (donde

no hay corte UV). Las conexiones visuales son: 6-3, 3-1, 1-4, 5-1 y 1-2.
– Hay 5 aristas compartidas. Cada arista fusiona 2 pares de vértices.
– Total vértices = 24− (5 aristas× 2 vértices) = 14.

Por tanto, el modelo necesita 14 vértices únicos.

2) Tablas de Definición del Modelo
Asumimos el sistema de referencia donde la cara 1 es el Frontal (z = 1), la cara 5 es Arriba
(y = 1), la cara 2 es Abajo (y = 0), la cara 3 es Izquierda (x = 0), la cara 4 es Derecha
(x = 1) y la cara 6 es Atrás (z = 0). El cubo va de (0, 0, 0) a (1, 1, 1).
Dividimos el dominio de textura u ∈ [0, 1], v ∈ [0, 1] según la rejilla 4x32:

– Paso en u: 1/4 = 0,25. Columnas: 0, 0,25, 0,5, 0,75, 1,0.
– Paso en v: 1/3 ≈ 0,333. Filas: 0, 0,33, 0,66, 1,0.

Nota: Las divisiones que se hacen de u y v corresponden a cada vértice, de manera que tan
solo tenemos que imaginar que la textura es como una tabla, si vemos en la cara 5 (arriba)
esta entre u=0.5 a u=0.75 y v=0.66 a v=1.0. En la tabla se hace referencia a top-esquina, lo
que se conoce como top-left en inglés, por ende, debemos debemos de tener en cuenta que la
coordenada v=1.0 es la parte superior de la textura y v=0.0 es la parte inferior. Se le debe
de atribuir u=0.5 y v=1.0 a la esquina superior izquierda de la cara 5 (arriba).

Tabla de Vértices (Geometría + Textura)

Ordenamos los vértices recorriendo la textura de arriba a abajo y de izquierda a dere-
cha.

2Es en base al enunciado.

Informática Gráfica Ismael Sallami Moreno

1.7 Sesión 8 109

Índice (i) Posición (x, y, z) Coord. Textura (u, v) Descripción (UV)
0 (0, 1, 0) (0,50, 1,00) Top-Esq Cara 5
1 (1, 1, 0) (0,75, 1,00) Top-Der Cara 5
2 (1, 1, 0) (0,00, 0,66) Top-Esq Cara 6
3 (0, 1, 0) (0,25, 0,66) Top-Der 6 / Top-Esq 3
4 (0, 1, 1) (0,50, 0,66) Top-Der 3 / Top-Esq 1 / Bot-Esq 5
5 (1, 1, 1) (0,75, 0,66) Top-Der 1 / Top-Esq 4 / Bot-Der 5
6 (1, 1, 0) (1,00, 0,66) Top-Der 4
7 (1, 0, 0) (0,00, 0,33) Bot-Esq Cara 6
8 (0, 0, 0) (0,25, 0,33) Bot-Der 6 / Bot-Esq 3
9 (0, 0, 1) (0,50, 0,33) Bot-Der 3 / Bot-Esq 1 / Top-Esq 2
10 (1, 0, 1) (0,75, 0,33) Bot-Der 1 / Bot-Esq 4 / Top-Der 2
11 (1, 0, 0) (1,00, 0,33) Bot-Der 4
12 (0, 0, 0) (0,50, 0,00) Bot-Esq Cara 2
13 (1, 0, 0) (0,75, 0,00) Bot-Der Cara 2

Tabla de Triángulos

Definimos dos triángulos por cara (sentido antihorario visto desde fuera).

Cara (Dado) Triángulo 1 (va, vb, vc) Triángulo 2 (va, vc, vd)
5 (Arriba) (0, 1, 4) (1, 5, 4)
6 (Atrás) (2, 3, 7) (3, 8, 7)
3 (Izq) (3, 4, 8) (4, 9, 8)

1 (Frente) (4, 5, 9) (5, 10, 9)
4 (Der) (5, 6, 10) (6, 11, 10)

2 (Abajo) (9, 10, 12) (10, 13, 12)

Nota: Usamos orden horario.

3) Esquema de la Textura
A continuación se muestra el espacio de coordenadas de textura (u, v) con los vértices
etiquetados según la tabla anterior.

Informática Gráfica Ismael Sallami Moreno

1.7 Sesión 8 110

u

v

0 0.25 0.5 0.75 1
0

0.33

0.66

1

6 3 1 4

5

2

v0v1

v2 v3v4 v5v6

v7 v8 v9v10 v11

v12v13

El código GDScript para definir las tablas de vértices, coordenadas de textura y triángulos es el
siguiente:

� �
1 # Definición de los vértices: posición y coordenadas de textura

2 var vertices = [

3 Vector3(0, 1, 0), # v0

4 Vector3(1, 1, 0), # v1

5 Vector3(1, 1, 0), # v2

6 Vector3(0, 1, 0), # v3

7 Vector3(0, 1, 1), # v4

8 Vector3(1, 1, 1), # v5

9 Vector3(1, 1, 0), # v6

10 Vector3(1, 0, 0), # v7

11 Vector3(0, 0, 0), # v8

12 Vector3(0, 0, 1), # v9

13 Vector3(1, 0, 1), # v10

14 Vector3(1, 0, 0), # v11

15 Vector3(0, 0, 0), # v12

16 Vector3(1, 0, 0), # v13

17]

18

19 var uvs = [

20 Vector2 (0.50, 1.00), # v0

21 Vector2 (0.75, 1.00), # v1

22 Vector2 (0.00, 0.66), # v2

23 Vector2 (0.25, 0.66), # v3

24 Vector2 (0.50, 0.66), # v4

25 Vector2 (0.75, 0.66), # v5

26 Vector2 (1.00, 0.66), # v6

27 Vector2 (0.00, 0.33), # v7

28 Vector2 (0.25, 0.33), # v8

29 Vector2 (0.50, 0.33), # v9

30 Vector2 (0.75, 0.33), # v10

31 Vector2 (1.00, 0.33), # v11

32 Vector2 (0.50, 0.00), # v12

33 Vector2 (0.75, 0.00), # v13

34]

35

Informática Gráfica Ismael Sallami Moreno

1.7 Sesión 8 111

36 # Definición de los triángulos (índices de vértices) en orden

horario (sentido antihorario visto desde fuera)

37 var triangles = [

38 # Cara 5 (Arriba)

39 0, 1, 4,

40 1, 5, 4,

41 # Cara 6 (Atrás)

42 2, 3, 7,

43 3, 8, 7,

44 # Cara 3 (Izquierda)

45 3, 4, 8,

46 4, 9, 8,

47 # Cara 1 (Frente)

48 4, 5, 9,

49 5, 10, 9,

50 # Cara 4 (Derecha)

51 5, 6, 10,

52 6, 11, 10,

53 # Cara 2 (Abajo)

54 9, 10, 12,

55 10, 13, 12,

56]
� �
Ejercicio 1.7.2

Considera de nuevo el cubo y la textura del problema anterior (un cubo de lado unidad con
centro en (0,5, 0,5, 0,5) y una textura de imagen con relación de aspecto 4:3 que despliega
las caras de un dado). Supón que ahora queremos visualizar el cubo iluminado, para lo cual
debemos asignar normales a los vértices.
Responde a estas cuestiones:

1) Describe razonadamente si sería posible usar la misma tabla de vértices y la misma
tabla de coordenadas de textura que en el problema anterior (donde se buscaba el
número mínimo de vértices), o si es necesario usar tablas distintas.

2) Si has respondido que no es posible usar las mismas tablas, escribe la nueva tabla de
vértices, la nueva tabla de coordenadas de textura y la tabla de normales.

Solución 1.7.2. La resolución del ejercicio es la siguiente:

1. Análisis de la reutilización de la tabla de vértices

Para responder a esta cuestión, debemos entender qué define un vértice en el contexto del cauce
gráfico (pipeline) cuando aplicamos iluminación.

En el problema anterior (8.1), buscábamos minimizar el espacio geométrico. Un cubo tiene geomé-
tricamente 8 esquinas. Si solo nos importara la posición (x, y, z), podríamos definir solo 8 vértices y
reutilizarlos mediante índices.

Sin embargo, para la iluminación (sombreado), necesitamos asociar un vector normal (n⃗) a cada
vértice. El vector normal indica hacia dónde ”mira” la superficie en ese punto para calcular cómo
rebota la luz.

Informática Gráfica Ismael Sallami Moreno

1.7 Sesión 8 112

– El problema de la continuidad: En una esfera suave, la normal en un vértice es el promedio
de las caras adyacentes, permitiendo un sombreado suave (Gouraud).

– El caso del cubo (aristas vivas): Un cubo tiene aristas afiladas (no suaves). Consideremos
una esquina del cubo, por ejemplo, la superior-derecha-frontal (1, 1, 1).

– Para la cara Frontal, la normal debe apuntar hacia adelante: n⃗ = (0, 0, 1).
– Para la cara Superior, la normal debe apuntar hacia arriba: n⃗ = (0, 1, 0).
– Para la cara Derecha, la normal debe apuntar a la derecha: n⃗ = (1, 0, 0).

Como un vértice en la memoria de la GPU es una estructura de datos única que contiene
{Posición, Normal, UV }, no podemos tener un solo vértice con tres normales distintas simul-
táneamente.

n⃗top(0, 1, 0)

n⃗right(1, 0, 0)

n⃗front(0, 0, 1)

Vértice compartido geométricamente

Conclusión: No es posible usar la misma tabla reducida de 8 vértices. Es necesario duplicar los
vértices en las costuras de las aristas. Necesitaremos vértices independientes para cada cara del
cubo.
Total de vértices necesarios: 6 caras× 4 vértices/cara = 24 vértices.

2. Definición de las nuevas tablas

Para construir las tablas, asumiremos la disposición de textura ”en cruz” típica para una relación
de aspecto 4:3, tal como sugiere el enunciado del Problema 8.1.

Esquema de la Textura (Relación 4:3): Dividimos la textura en una cuadrícula de 4× 3.

– Ancho de celda (u): 1/4 = 0,25
– Alto de celda (v): 1/3 ≈ 0,333

Informática Gráfica Ismael Sallami Moreno

1.7 Sesión 8 113

Izq (L) Frente (F) Der (R) Tras (B)

Arriba (T)

Abajo (D)

u

v

0 0.25 0.5 0.75 1.0
0

0.33

0.66

1.0

A continuación, definimos las tablas. Dado que el cubo tiene lado 1 y centro en (0,5, 0,5, 0,5), las
coordenadas van de 0,0 a 1,0 en los ejes X, Y, Z.

Nota de notación:

– Posición: (x, y, z)
– Normal: (nx, ny, nz)
– Textura: (u, v)

Desglosaremos la tabla cara por cara (cada cara genera 4 vértices únicos).

Tabla Completa de Vértices (Datos combinados)

1) Cara Frontal (Z = 1): Corresponde a la celda (u ∈ [0,25, 0,5], v ∈ [0,33, 0,66]). Normal
n⃗ = (0, 0, 1).

Índice Posición (x, y, z) Normal (nx, ny, nz) Textura (u, v)
0 (0, 0, 1) (0, 0, 1) (0,25, 0,33)
1 (1, 0, 1) (0, 0, 1) (0,50, 0,33)
2 (1, 1, 1) (0, 0, 1) (0,50, 0,66)
3 (0, 1, 1) (0, 0, 1) (0,25, 0,66)

2) Cara Derecha (X = 1): Corresponde a la celda (u ∈ [0,5, 0,75], v ∈ [0,33, 0,66]). Normal
n⃗ = (1, 0, 0).

Índice Posición (x, y, z) Normal (nx, ny, nz) Textura (u, v)
4 (1, 0, 1) (1, 0, 0) (0,50, 0,33)
5 (1, 0, 0) (1, 0, 0) (0,75, 0,33)
6 (1, 1, 0) (1, 0, 0) (0,75, 0,66)
7 (1, 1, 1) (1, 0, 0) (0,50, 0,66)

3) Cara Trasera (Z = 0): Corresponde a la celda (u ∈ [0,75, 1,0], v ∈ [0,33, 0,66]). Normal

Informática Gráfica Ismael Sallami Moreno

1.7 Sesión 8 114

n⃗ = (0, 0,−1).

Índice Posición (x, y, z) Normal (nx, ny, nz) Textura (u, v)
8 (1, 0, 0) (0, 0,−1) (0,75, 0,33)
9 (0, 0, 0) (0, 0,−1) (1,00, 0,33)
10 (0, 1, 0) (0, 0,−1) (1,00, 0,66)
11 (1, 1, 0) (0, 0,−1) (0,75, 0,66)

4) Cara Izquierda (X = 0): Corresponde a la celda (u ∈ [0,0, 0,25], v ∈ [0,33, 0,66]). Normal
n⃗ = (−1, 0, 0).

Índice Posición (x, y, z) Normal (nx, ny, nz) Textura (u, v)
12 (0, 0, 0) (−1, 0, 0) (0,00, 0,33)
13 (0, 0, 1) (−1, 0, 0) (0,25, 0,33)
14 (0, 1, 1) (−1, 0, 0) (0,25, 0,66)
15 (0, 1, 0) (−1, 0, 0) (0,00, 0,66)

5) Cara Superior (Y = 1): Corresponde a la celda superior central (u ∈ [0,25, 0,5], v ∈
[0,66, 1,0]). Normal n⃗ = (0, 1, 0).

Índice Posición (x, y, z) Normal (nx, ny, nz) Textura (u, v)
16 (0, 1, 1) (0, 1, 0) (0,25, 0,66)
17 (1, 1, 1) (0, 1, 0) (0,50, 0,66)
18 (1, 1, 0) (0, 1, 0) (0,50, 1,00)
19 (0, 1, 0) (0, 1, 0) (0,25, 1,00)

6) Cara Inferior (Y = 0): Corresponde a la celda inferior central (u ∈ [0,25, 0,5], v ∈
[0,0, 0,33]). Normal n⃗ = (0,−1, 0).

Índice Posición (x, y, z) Normal (nx, ny, nz) Textura (u, v)
20 (0, 0, 0) (0,−1, 0) (0,25, 0,00)
21 (1, 0, 0) (0,−1, 0) (0,50, 0,00)
22 (1, 0, 1) (0,−1, 0) (0,50, 0,33)
23 (0, 0, 1) (0,−1, 0) (0,25, 0,33)

El código GDScript para definir las nuevas tablas de vértices, normales y coordenadas de textura es
el siguiente:

� �
1 # Tabla de posiciones (24 vértices: 6 caras x 4 vértices)

2 var vertices = [

3 # Cara Frontal (Z=1)

Informática Gráfica Ismael Sallami Moreno

1.7 Sesión 8 115

4 Vector3 (0,0,1), Vector3 (1,0,1), Vector3 (1,1,1), Vector3

(0,1,1),

5 # Cara Derecha (X=1)

6 Vector3 (1,0,1), Vector3 (1,0,0), Vector3 (1,1,0), Vector3

(1,1,1),

7 # Cara Trasera (Z=0)

8 Vector3 (1,0,0), Vector3 (0,0,0), Vector3 (0,1,0), Vector3

(1,1,0),

9 # Cara Izquierda (X=0)

10 Vector3 (0,0,0), Vector3 (0,0,1), Vector3 (0,1,1), Vector3

(0,1,0),

11 # Cara Superior (Y=1)

12 Vector3 (0,1,1), Vector3 (1,1,1), Vector3 (1,1,0), Vector3

(0,1,0),

13 # Cara Inferior (Y=0)

14 Vector3 (0,0,0), Vector3 (1,0,0), Vector3 (1,0,1), Vector3

(0,0,1),

15]

16

17 # Tabla de normales (una por vértice , constante por cara)

18 var normals = [

19 # Frontal

20 Vector3 (0,0,1), Vector3 (0,0,1), Vector3 (0,0,1), Vector3

(0,0,1),

21 # Derecha

22 Vector3 (1,0,0), Vector3 (1,0,0), Vector3 (1,0,0), Vector3

(1,0,0),

23 # Trasera

24 Vector3(0,0,-1), Vector3(0,0,-1), Vector3(0,0,-1), Vector3

(0,0,-1),

25 # Izquierda

26 Vector3(-1,0,0), Vector3(-1,0,0), Vector3(-1,0,0), Vector3(-

1,0,0),

27 # Superior

28 Vector3 (0,1,0), Vector3 (0,1,0), Vector3 (0,1,0), Vector3

(0,1,0),

29 # Inferior

30 Vector3(0,-1,0), Vector3(0,-1,0), Vector3(0,-1,0), Vector3

(0,-1,0),

31]

32

33 # Tabla de coordenadas de textura (UV)

34 var uvs = [

35 # Frontal (u: 0.25-0.5, v: 0.33-0.66)

36 Vector2 (0.25 ,0.33) , Vector2 (0.50 ,0.33) , Vector2 (0.50 ,0.66) ,

Vector2 (0.25 ,0.66) ,

37 # Derecha (u: 0.5-0.75, v: 0.33-0.66)

38 Vector2 (0.50 ,0.33) , Vector2 (0.75 ,0.33) , Vector2 (0.75 ,0.66) ,

Informática Gráfica Ismael Sallami Moreno

1.7 Sesión 8 116

Vector2 (0.50 ,0.66) ,

39 # Trasera (u: 0.75-1.0, v: 0.33-0.66)

40 Vector2 (0.75 ,0.33) , Vector2 (1.00 ,0.33) , Vector2 (1.00 ,0.66) ,

Vector2 (0.75 ,0.66) ,

41 # Izquierda (u: 0.0-0.25, v: 0.33-0.66)

42 Vector2 (0.00 ,0.33) , Vector2 (0.25 ,0.33) , Vector2 (0.25 ,0.66) ,

Vector2 (0.00 ,0.66) ,

43 # Superior (u: 0.25-0.5, v: 0.66-1.0)

44 Vector2 (0.25 ,0.66) , Vector2 (0.50 ,0.66) , Vector2 (0.50 ,1.00) ,

Vector2 (0.25 ,1.00) ,

45 # Inferior (u: 0.25-0.5, v: 0.00-0.33)

46 Vector2 (0.25 ,0.00) , Vector2 (0.50 ,0.00) , Vector2 (0.50 ,0.33) ,

Vector2 (0.25 ,0.33) ,

47]

48

49 # Tabla de triángulos

50 var triangles = [

51 # Frontal

52 0,1,2, 0,2,3,

53 # Derecha

54 4,5,6, 4,6,7,

55 # Trasera

56 8,9,10, 8,10,11,

57 # Izquierda

58 12,13,14, 12,14,15,

59 # Superior

60 16,17,18, 16,18,19,

61 # Inferior

62 20,21,22, 20,22,23,

63]
� �
Ejercicio 1.7.3

Considera un cubo de lado unidad y con centro en (1
2 , 1

2 , 1
2). Se quiere visualizar con una

textura a partir de una única imagen (cuadrada) que se replicará en las 6 caras de dicho cubo.
Asume que no se va a usar iluminación (no es necesario calcular la tabla de normales).
Escribe ahora la tabla de coordenadas de vértices y la tabla de coordenadas de textura
necesarias para renderizar este objeto correctamente.

Solución 1.7.3. Para resolver este problema, debemos entender primero cómo funciona el mapeado
de texturas en un motor gráfico (como OpenGL o el usado en Godot).

1) Análisis de la Geometría: El cubo tiene lado L = 1 y su centro es C = (0,5, 0,5, 0,5). Esto
implica que las coordenadas espaciales de los vértices varían desde:

xmin = 0,5− 0,5 = 0, xmax = 0,5 + 0,5 = 1

Lo mismo aplica para y y z. Por tanto, el cubo ocupa el volumen [0, 1]3.

Informática Gráfica Ismael Sallami Moreno

1.7 Sesión 8 117

2) El Problema de la Continuidad (Por qué necesitamos 24 vértices): Un cubo
geométrico tiene solo 8 esquinas (vértices físicos). Sin embargo, nos piden replicar la imagen
completa en cada una de las 6 caras.
Imaginemos la esquina superior derecha de la cara frontal. Sus coordenadas espaciales son
(1, 1, 1).

– Para la Cara Frontal, esta esquina corresponde a la coordenada de textura (u, v) =
(1, 1) (arriba-derecha de la imagen).

– Para la Cara Derecha, esa misma esquina espacial (1, 1, 1) corresponde a (u, v) = (0, 1)
(arriba-izquierda de la imagen).

– Para la Cara Superior, esa esquina corresponde a (u, v) = (1, 0) (abajo-derecha de la
imagen, dependiendo de la orientación).

En informática gráfica, un vértice se define por la tupla única de sus atributos: (Posicion, UV).
Como una misma posición espacial requiere distintos UVs según la cara que estemos dibu-
jando, debemos duplicar los vértices. No podemos usar solo 8 vértices compartidos (mesh
indexada simple); necesitamos definir 4 vértices únicos por cada una de las 6 caras.

Total de vértices = 6 caras× 4 vértices/cara = 24 vértices.

3) Esquema Visual del Mapeado: A continuación, representamos cómo se asignan las
coordenadas (u, v) a una cara genérica para que la imagen se vea derecha (no rotada ni
espejada).

u

v

(0, 0) (1, 0)

(1, 1)(0, 1)

Imagen de Textura

4) Tablas de Definición del Modelo: Definiremos los vértices cara por cara. Asumiremos el
orden de vértices estándar para formar dos triángulos (por ejemplo: 0-1-2 y 0-2-3 para un
quad) en sentido antihorario (CCW).

Informática Gráfica Ismael Sallami Moreno

1.7 Sesión 8 118

Cara Índice (i) Posición (x, y, z) Coord. Textura (u, v)

Frontal (z = 1)

0 (0, 0, 1) (0, 0)
1 (1, 0, 1) (1, 0)
2 (1, 1, 1) (1, 1)
3 (0, 1, 1) (0, 1)

Trasera (z = 0)

4 (1, 0, 0) (0, 0)
5 (0, 0, 0) (1, 0)
6 (0, 1, 0) (1, 1)
7 (1, 1, 0) (0, 1)

Derecha (x = 1)

8 (1, 0, 1) (0, 0)
9 (1, 0, 0) (1, 0)
10 (1, 1, 0) (1, 1)
11 (1, 1, 1) (0, 1)

Izquierda (x = 0)

12 (0, 0, 0) (0, 0)
13 (0, 0, 1) (1, 0)
14 (0, 1, 1) (1, 1)
15 (0, 1, 0) (0, 1)

Superior (y = 1)

16 (0, 1, 1) (0, 0)
17 (1, 1, 1) (1, 0)
18 (1, 1, 0) (1, 1)
19 (0, 1, 0) (0, 1)

Inferior (y = 0)

20 (0, 0, 0) (0, 0)
21 (1, 0, 0) (1, 0)
22 (1, 0, 1) (1, 1)
23 (0, 0, 1) (0, 1)

Cuadro 1.1: Tabla Combinada de Vértices y Coordenadas de Textura

Nota sobre la orientación: En la cara trasera y las laterales, el orden de los vértices y la asignación
de (u, v) se ha elegido para mantener la coherencia visual (que la imagen no se vea ”espejada”) y el
orden de los vértices (winding order) sea consistente para el ”culling” de caras traseras.

El código GDScript para definir las tablas de vértices y coordenadas de textura es el siguiente:

� �
1 # Tabla de posiciones (24 vértices: 6 caras x 4 vértices)

2 var vertices = [

3 # Frontal (z=1)

4 Vector3 (0,0,1), Vector3 (1,0,1), Vector3 (1,1,1), Vector3

(0,1,1),

5 # Trasera (z=0)

6 Vector3 (1,0,0), Vector3 (0,0,0), Vector3 (0,1,0), Vector3

(1,1,0),

7 # Derecha (x=1)

8 Vector3 (1,0,1), Vector3 (1,0,0), Vector3 (1,1,0), Vector3

Informática Gráfica Ismael Sallami Moreno

1.7 Sesión 8 119

(1,1,1),

9 # Izquierda (x=0)

10 Vector3 (0,0,0), Vector3 (0,0,1), Vector3 (0,1,1), Vector3

(0,1,0),

11 # Superior (y=1)

12 Vector3 (0,1,1), Vector3 (1,1,1), Vector3 (1,1,0), Vector3

(0,1,0),

13 # Inferior (y=0)

14 Vector3 (0,0,0), Vector3 (1,0,0), Vector3 (1,0,1), Vector3

(0,0,1),

15]

16

17 # Tabla de coordenadas de textura (UV)

18 var uvs = [

19 # Frontal

20 Vector2 (0,0), Vector2 (1,0), Vector2 (1,1), Vector2 (0,1),

21 # Trasera

22 Vector2 (0,0), Vector2 (1,0), Vector2 (1,1), Vector2 (0,1),

23 # Derecha

24 Vector2 (0,0), Vector2 (1,0), Vector2 (1,1), Vector2 (0,1),

25 # Izquierda

26 Vector2 (0,0), Vector2 (1,0), Vector2 (1,1), Vector2 (0,1),

27 # Superior

28 Vector2 (0,0), Vector2 (1,0), Vector2 (1,1), Vector2 (0,1),

29 # Inferior

30 Vector2 (0,0), Vector2 (1,0), Vector2 (1,1), Vector2 (0,1),

31]

32

33 # Tabla de triángulos

34 var triangles = [

35 # Frontal

36 0,1,2, 0,2,3,

37 # Trasera

38 4,5,6, 4,6,7,

39 # Derecha

40 8,9,10, 8,10,11,

41 # Izquierda

42 12,13,14, 12,14,15,

43 # Superior

44 16,17,18, 16,18,19,

45 # Inferior

46 20,21,22, 20,22,23,

47]
� �

Informática Gráfica Ismael Sallami Moreno

1.8 Sesión 9 120

1.8 Sesión 9
Ejercicio 1.8.1

En una aplicación Godot cualquiera, añade código al nodo raíz de forma que cada vez que se
pulse y luego se levante una tecla (por ejemplo la tecla P), se imprima en pantalla un mensaje
con el tiempo total en segundos que dicha tecla ha estado pulsada, en los casos en los que ha
permanecido pulsada al menos el tiempo de un frame.

Solución 1.8.1. Para resolver este problema, debemos comprender cómo funciona el ciclo de vida de
un videojuego o aplicación gráfica interactiva en tiempo real. No basta con saber que una tecla ha
sido pulsada; necesitamos cuantificar la duración temporal de ese estado.

En Godot, la función _process(delta) se ejecuta en cada fotograma (frame). El parámetro delta

representa el tiempo transcurrido (en segundos) desde el fotograma anterior. Por lo tanto, la
estrategia consiste en acumular este valor delta mientras la tecla esté presionada y, en el momento
exacto en que se libera, mostrar el total acumulado.

A continuación, se presenta el diagrama de flujo lógico que seguiremos para implementar el algoritmo:

Informática Gráfica Ismael Sallami Moreno

1.8 Sesión 9 121

_process(delta)

¿Tecla ’P’
pulsada?

tiempo += delta

¿Estaba pulsada
antes?

Imprimir tiempo

Resetear tiempo

Sí

No

No

Sí (Soltada)

Implementación paso a paso:

1) Definición de variables de estado: Necesitamos una variable para acumular el tiempo
(tiempo_pulsado) y una variable booleana (tecla_activa) para saber si estamos en medio
de una acción de pulsación. Esto es necesario para detectar el evento ”just released” (acaba
de ser soltada) manualmente o mediante la lógica de estados.

2) Uso del bucle de procesamiento: Utilizaremos la función virtual _process(delta), que
Godot invoca continuamente.

3) Lógica de entrada (Input): Usaremos la clase Input para sondear (polling) el estado
físico de la tecla ’P’ (código KEY_P).

4) Acumulación y Reporte:
– Si la tecla está pulsada: Sumamos delta a nuestra variable acumuladora.
– Si la tecla NO está pulsada pero tecla_activa es verdadera: Significa que el usuario

acaba de soltar la tecla. En ese momento imprimimos el valor y reiniciamos las variables.

Código GDScript Solución:

Informática Gráfica Ismael Sallami Moreno

1.8 Sesión 9 122

� �
1 extends Node

2

3 # Variable para almacenar el tiempo acumulado en segundos

4

5 var tiempo_acumulado: float = 0.0

6

7 # Bandera para controlar el estado de la tecla (si se está

manteniendo pulsada)

8

9 var tecla_esta_pulsada: bool = false

10

11 func _process(delta: float) -> void:

12 # Verificamos si la tecla P está siendo presionada en este frame

13 if Input.is_key_pressed(KEY_P):

14 # Marcamos que la tecla está activa

15 tecla_esta_pulsada = true

16

17 # Acumulamos el tiempo transcurrido desde el último frame

18 tiempo_acumulado += delta

19

20 else:

21 # Si la tecla NO está pulsada , verificamos si lo estaba en

el frame anterior

22 # Esto indica el evento ''Just Released '' (Acaba de soltarse

)

23 if tecla_esta_pulsada:

24

25 # Verificamos la condición del enunciado:

26 # ''permanecido pulsada al menos el tiempo de un frame ''

27 # Si tiempo_acumulado > 0, significa que al menos un

frame sumó delta.

28 if tiempo_acumulado > 0.0:

29 print(''La tecla P se mantuvo pulsada durante: '',

30 tiempo_acumulado , '' segundos.'')

31

32 # Reiniciamos el estado para la próxima pulsación

33 tiempo_acumulado = 0.0

34 tecla_esta_pulsada = false
� �

Informática Gráfica Ismael Sallami Moreno

1.8 Sesión 9 123

Ejercicio 1.8.2

Una posibilidad para hacer selección en mallas de triángulos es usar cálculo de intersecciones
entre un rayo (una semirrecta que pasa por el centro de un píxel) y cada uno de los triángulos
de la malla.
Diseña un algoritmo en pseudo-código para el cálculo de intersecciones entre un rayo y un
triángulo:

– El rayo tiene como origen o extremo el punto cuyas coordenadas del mundo es la tupla
o, y como vector de dirección la tupla d (la suponemos normalizada).

– Las coordenadas del mundo de los vértices del triángulo son v0, v1 y v2.
– El algoritmo debe indicar si hay intersección o no, y, en caso de que la haya, calcular

las coordenadas del mundo del punto de intersección.
Ten en cuenta que habrá intersección si y solo si se cumplen cada una de estas dos condiciones:

– El rayo intersecta con el plano del triángulo si y solo si existe t > 0 tal que el punto
pt = o + td está en el plano. Esto equivale a que el vector pt − v0 es perpendicular a la
normal del plano n (es decir, su producto escalar es nulo).

– El punto pt está dentro del triángulo si existen dos valores reales no negativos a y b (con
0 ≤ a + b ≤ 1) tales que el vector pt − v0 = a(v1 − v0) + b(v2 − v0). A los tres valores a,
b y c ≡ 1− a− b se les llama coordenadas baricéntricas de pt en el triángulo.

v1 − v0

v2 − v0

d

v0

v1

v2

o

pt

pt − v0

Solución 1.8.2. Para resolver el problema siguiendo estrictamente las condiciones dadas, el algoritmo
se estructura en dos fases secuenciales: encontrar el punto en el plano (Condición 1) y validar si
dicho punto está contenido en la región triangular (Condición 2).

Procedimiento detallado:

1) Cálculo de la Normal del Plano: Primero, definimos los vectores directores del plano del
triángulo basándonos en sus aristas:

e1 = v1 − v0

e2 = v2 − v0

La normal n se obtiene mediante el producto vectorial:

n = e1 × e2

2) Condición 1: Intersección con el Plano: Buscamos un t tal que el vector desde v0 hasta
el punto de impacto pt sea ortogonal a la normal. La ecuación del plano es (p− v0) · n = 0.

Informática Gráfica Ismael Sallami Moreno

1.8 Sesión 9 124

Sustituyendo la ecuación del rayo p = o + t · d:

((o + t · d)− v0) · n = 0

(o− v0) · n + t(d · n) = 0

Despejando t:
t = (v0 − o) · n

d · n
Si d · n ≈ 0, el rayo es paralelo al plano (no hay intersección). Si t ≤ 0, el triángulo está
detrás del origen.

3) Condición 2: Inclusión en el Triángulo (Coordenadas Baricéntricas): Una vez
tenemos pt = o+ t ·d, definimos el vector w = pt−v0. Según el enunciado, debemos encontrar
a y b tales que:

w = a · e1 + b · e2

Esto es un sistema de ecuaciones lineales. Para resolverlo eficientemente usando productos
escalares, multiplicamos la ecuación por e1 y por e2:

1) (w · e1) = a(e1 · e1) + b(e2 · e1)
2) (w · e2) = a(e1 · e2) + b(e2 · e2)

Aplicando la regla de Cramer para despejar a y b:

a = (w · e1)(e2 · e2)− (w · e2)(e1 · e2)
(e1 · e1)(e2 · e2)− (e1 · e2)2

b = (e1 · e1)(w · e2)− (e1 · e2)(w · e1)
(e1 · e1)(e2 · e2)− (e1 · e2)2

Finalmente, verificamos si a ≥ 0, b ≥ 0 y a + b ≤ 1.

Algoritmo en Pseudo-código:

� �
1 Funcion IntersectarRayoTriangulo(o, d, v0, v1, v2):

2 // --- Pre-computo de vectores del triangulo ---

3 Vector3 e1 = v1 - v0

4 Vector3 e2 = v2 - v0

5 Vector3 n = ProductoCruz(e1, e2) // Normal del plano

6

7

8 // --- Condicion 1: Interseccion Rayo-Plano ---

9

10 // Calculamos el denominador (d . n)

11 float det = ProductoPunto(d, n)

12

13 // Si es cercano a 0, el rayo es paralelo al triangulo

14 Si valor_absoluto(det) < EPSILON:

15 Retornar {Falso , Nulo}

16

17 // Calculamos t usando la formula derivada: t = ((v0 - o) . n) /

det

Informática Gráfica Ismael Sallami Moreno

1.8 Sesión 9 125

18 Vector3 origen_a_v0 = v0 - o

19 float t = ProductoPunto(origen_a_v0 , n) / det

20

21 // Verificamos que la interseccion esta delante de la camara (t

> 0)

22 Si t < EPSILON:

23 Retornar {Falso , Nulo}

24

25 // Calculamos el punto de interseccion en el plano

26 Vector3 pt = o + (d * t)

27

28 // --- Condicion 2: Punto dentro del triangulo ---

29 // Debemos resolver: pt - v0 = a*e1 + b*e2

30

31 Vector3 w = pt - v0

32

33 // Calculo de productos punto para el sistema de Cramer

34 float uu = ProductoPunto(e1, e1)

35 float uv = ProductoPunto(e1, e2)

36 float vv = ProductoPunto(e2, e2)

37 float wu = ProductoPunto(w, e1)

38 float wv = ProductoPunto(w, e2)

39

40 // Denominador del sistema (determinante)

41 float denominador = (uu * vv) - (uv * uv)

42

43 // Si denominador es 0, el triangulo es degenerado (linea o

punto)

44 Si valor_absoluto(denominador) < EPSILON:

45 Retornar {Falso , Nulo}

46

47 // Calculo de coordenadas baricentricas a y b

48 float a = ((wu * vv) - (wv * uv)) / denominador

49 float b = ((uu * wv) - (wu * uv)) / denominador

50

51 // Verificacion final de limites baricentricos

52 // 0 <= a, 0 <= b, a + b <= 1

53 Si (a >= 0.0) Y (b >= 0.0) Y (a + b <= 1.0):

54 Retornar {Verdadero , pt}

55 Sino:

56 Retornar {Falso , Nulo}� �
Solución 1.8.2. Otra resolución alternativa y más detallada es la que se proporciona a continuación.
Para resolver este problema, debemos traducir la geometría 3D a una serie de pasos lógicos. No
basta con aplicar fórmulas; hay que entender qué significan. El proceso se divide en tres fases:
definir la pared (plano), buscar el choque y verificar si el choque está dentro del triángulo.

Informática Gráfica Ismael Sallami Moreno

1.8 Sesión 9 126

1. Definición del Plano (La Pared)

Un triángulo es plano. Para saber si un rayo choca con él, primero necesitamos saber la orientación
de la pared invisible donde está pegado el triángulo.

– Calculamos dos vectores que bordean el triángulo desde v0:

e1 = v1 − v0, e2 = v2 − v0

– La orientación (el vector normal n) es perpendicular a ambos bordes:

n = e1 × e2

2. El Choque (Cálculo de t)

El rayo es una línea que empieza en o y avanza en dirección d. La fórmula del impacto en el plano
es:

t = (v0 − o) · n
d · n

¿Por qué t < 0 significa “detrás”? Imagina que el rayo son tus pasos.

– t = 0 es donde estás parado (el origen).
– t > 0 son pasos hacia adelante (lo que ves).
– t < 0 son pasos hacia atrás (a tu espalda).

La fórmula matemática asume una recta infinita (hacia adelante y atrás). Si el cálculo da t = −5,
significa que el plano está 5 pasos a tu espalda. Como una cámara solo "ve"hacia adelante, descartamos
cualquier t < 0.

3. ¿Dentro o Fuera? (Coordenadas Baricéntricas)

Si t > 0, el rayo golpea la pared en el punto p. Ahora usamos coordenadas baricéntricas (a, b) para
ver si ese punto cae dentro del dibujo del triángulo. Es como preguntar: "¿Puedo llegar al punto p
dando pasos solo a lo largo de los bordes e1 y e2 sin salirme?".

Se resuelve el sistema p− v0 = ae1 + be2. Si a ≥ 0, b ≥ 0 y a + b ≤ 1, estamos dentro.

Informática Gráfica Ismael Sallami Moreno

1.8 Sesión 9 127

Algorithm 1 Intersección Rayo-Triángulo
1: Entrada: Rayo (o, d), Triángulo (v0, v1, v2)
2: Salida: Bool (¿Impacto?), Punto (p)

▷ — Fase 1: Preparar vectores —
3: e1 ← v1 − v0
4: e2 ← v2 − v0
5: n← e1 × e2 ▷ Producto Vectorial (Normal)

▷ — Fase 2: Intersección con el plano —
6: det← d · n
7: if |det| < ϵ then ▷ ¿Es el rayo paralelo al plano?
8: return Falso, Nulo
9: end if

10: vec_origen← v0 − o
11: t← (vec_origen · n)/det
12: if t < 0 then ▷ Si t es negativo, el triángulo está detrás
13: return Falso, Nulo
14: end if

▷ — Fase 3: Test de inclusión (Baricéntricas) —
15: p← o + (t · d) ▷ Punto de impacto en el plano
16: w← p− v0

▷ Resolvemos sistema lineal usando prod. escalares (Cramer)
17: uu← e1 · e1; uv ← e1 · e2; vv ← e2 · e2
18: wu← w · e1; wv ← w · e2
19: D ← (uu · vv)− (uv · uv)
20: a← ((wu · vv)− (wv · uv))/D
21: b← ((uu · wv)− (uv · wu))/D
22: if a ≥ 0 ∧ b ≥ 0 ∧ (a + b ≤ 1) then
23: return Verdadero, p ▷ ¡Impacto confirmado!
24: else
25: return Falso, Nulo ▷ Fuera del triángulo
26: end if

Informática Gráfica Ismael Sallami Moreno

1.8 Sesión 9 128

Ejercicio 1.8.3

Para implementar la selección usando intersecciones es necesario calcular el rayo que tiene
como origen el observador y pasa por el centro del pixel donde se ha hecho click.
Escribe el pseudo-código del algoritmo que calcula el rayo a partir de las coordenadas del
pixel donde se ha hecho click:

– Tenemos una vista perspectiva, y conocemos los 6 valores usados para construir la
matriz de proyección (left, right, top, bottom, near, far).

– También conocemos el marco de coordenadas de vista, es decir, las tuplas y con los
versores y la tupla con el punto origen (todos en coordenadas del mundo).

– El viewport tiene columnas y filas de pixels.
– Se ha hecho click en el pixel de coordenadas enteras e .

El algoritmo debe producir como salida las tuplas y (normalizado) que definen el rayo.

xec

yec

−zec

Plano Near (n)
d

Centro Pixel (u, v)

oec (Origen)

Solución 1.8.3. El objetivo de este ejercicio es realizar el proceso inverso a la rasterización: en lugar
de proyectar un punto 3D a un pixel 2D, queremos proyectar un pixel 2D hacia el espacio 3D
(”Un-project”).

Para ello, debemos transformar las coordenadas del pixel desde el espacio de pantalla al espacio de
la cámara (View Space), y finalmente rotar ese vector al espacio del mundo (World Space) usando
la base de la cámara dada.

Procedimiento paso a paso:

1) Mapeo de Pixel a Plano de Imagen (View Plane): El plano de proyección se encuentra
a una distancia (near) de la cámara. Los límites de este plano son en horizontal y en vertical.
Los pixels se indexan generalmente desde la esquina superior izquierda (0, 0) hasta (w, filas).
Sin embargo, el sistema de coordenadas de la cámara suele tener el eje Y apuntando hacia
arriba. Debemos tener cuidado con esta inversión.
Calculamos las coordenadas físicas (u, v) en el plano near correspondientes al centro del
pixel:

– Sumamos 0,5 a xp y yp para apuntar al centro del pixel, no a su esquina.
– Interpolamos linealmente:

u = l + (r − l) · xp + 0,5
w

v = t− (t− b) · yp + 0,5
filas

Nota: Asumimos que yp = 0 es la parte superior (top) y yp = filas es la inferior
(bottom), por eso restamos en v.

2) Construcción del Vector en Espacio de Cámara: En el sistema de referencia local de

Informática Gráfica Ismael Sallami Moreno

1.8 Sesión 9 129

la cámara:
– El origen del rayo es (0, 0, 0).
– El rayo atraviesa el plano near en (u, v,−n). (Recordemos que en OpenGL/Godot la

cámara mira hacia −Z).
– El vector dirección local es d⃗local = (u, v,−n).

3) Transformación al Espacio del Mundo: Ahora usamos la base de la cámara dada
(xec, yec, zec) para orientar este vector en el mundo.

d⃗mundo = u · x⃗ec + v · y⃗ec + (−n) · z⃗ec

El origen del rayo o es simplemente la posición de la cámara oec.
4) Normalización: Finalmente, normalizamos el vector dirección resultante.

Algoritmo en Pseudo-código:

� �
1 Funcion CalcularRayoDesdePixel(xp, yp, w, filas , l, r, b, t, n,

o_ec , x_ec , y_ec , z_ec):

2

3 // 1. Calcular coordenadas normalizadas del centro del pixel

(0.0 a 1.0)

4 // Sumamos 0.5 para tomar el centro exacto del pixel

5 float ratio_x = (xp + 0.5) / w

6 float ratio_y = (yp + 0.5) / filas

7

8 // 2. Mapear al tamaño fisico del plano near (View Plane)

9 // Coordenada u (horizontal): interpolar entre left (l) y right

(r)

10 float u = l + ((r - l) * ratio_x)

11

12 // Coordenada v (vertical): interpolar entre top (t) y bottom (b

)

13 // IMPORTANTE: Asumimos que yp=0 es arriba (top) y yp=filas es

abajo (bottom)

14 // Por tanto , a mayor yp , nos acercamos mas a 'b' y nos alejamos

de 't'

15 float v = t - ((t - b) * ratio_y)

16

17 // 3. Construir el vector de direccion en coordenadas del mundo

18 // El vector en espacio camara es (u, v, -n)

19 // Lo transformamos multiplicando por los versores de la base de

la camara

20 // d = u*Right + v*Up + (-n)*Back

21

22 Vector3 direccion_no_norm = (x_ec * u) + (y_ec * v) - (z_ec * n)

23

24 // 4. Normalizar la direccion

25 Vector3 d = Normalizar(direccion_no_norm)

26

Informática Gráfica Ismael Sallami Moreno

1.9 Sesión 10 130

27 // 5. El origen del rayo es la posicion de la camara (proyeccion

perspectiva)

28 Vector3 o = o_ec

29

30 Retornar {o, d}� �
1.9 Sesión 10

Ejercicio 1.9.1

Supongamos que un rayo (una semirrecta en 3D) tiene como origen o extremo el punto cuyas
coordenadas del mundo es la tupla o, y como vector de dirección la tupla d (la suponemos
normalizada). Además, sabemos que un disco de radio r tiene como centro el punto de
coordenadas de mundo c y está en el plano perpendicular al vector n.
Con estos datos de entrada, diseña un algoritmo para calcular si hay intersección entre el rayo
y el disco.
Ten en cuenta que habrá intersección si y solo si se cumplen cada una de estas dos condiciones:

1) El rayo interseca con el plano que contiene al disco, es decir, existe t > 0 tal que el punto
pt ≡ o + td está en dicho plano. Equivale a decir que el vector pt − c es perpendicular a
la normal al plano n.

2) El punto pt citado arriba está dentro del disco, es decir, su distancia a c es inferior al
radio.

Solución 1.9.1. Para resolver este problema geométrico fundamental en el trazado de rayos (ray-
tracing), se debe descomponer la situación en dos etapas lógicas secuenciales. Primero, se determina
el punto donde el rayo infinito cruza el plano matemático que contiene al disco. Segundo, se verifica
si dicho punto de cruce se encuentra dentro de los límites finitos del disco (es decir, dentro de su
radio).

1) Definición Algebraica del Rayo y el Plano:
Un rayo se define paramétricamente como una línea que parte de un origen o y avanza en la
dirección d. Cualquier punto p(t) sobre el rayo se puede expresar como:

p(t) = o + t · d

Donde t es un escalar real (t ≥ 0) que representa la distancia desde el origen a lo largo del
vector dirección.
Por otro lado, un plano en el espacio 3D queda definido por un punto conocido (en este
caso, el centro del disco c) y un vector normal n perpendicular a la superficie. La condición
para que un punto genérico p pertenezca al plano es que el vector formado entre el centro y
ese punto sea perpendicular a la normal. Matemáticamente, esto implica que su producto
escalar (dot product) es cero:

(p− c) · n = 0

2) Cálculo del parámetro de intersección t:
Para encontrar la intersección, se sustituye la ecuación del rayo en la ecuación del plano:

((o + t · d)− c) · n = 0

Informática Gráfica Ismael Sallami Moreno

1.9 Sesión 10 131

Aplicando la propiedad distributiva del producto escalar:

(o− c) · n + (t · d) · n = 0

(o · n)− (c · n) + t(d · n) = 0

Despejando t:
t(d · n) = (c · n)− (o · n)

t(d · n) = (c− o) · n

t = (c− o) · n
d · n

Aquí surgen consideraciones críticas de implementación:
– Si el denominador d · n es igual a 0, significa que el rayo es perpendicular a la normal

del plano (es decir, el rayo es paralelo al plano), por lo que no hay intersección (o el
rayo está contenido en el plano).

– Si t < 0, la intersección ocurre ”detrás” del origen del rayo, por lo que no es visible y
debe descartarse.

3) Cálculo del punto de intersección pt:
Una vez obtenido un t válido (t > 0), se calcula la coordenada exacta del punto en el espacio:

pt = o + t · d

4) Verificación de pertenencia al disco:
El hecho de que pt esté en el plano no garantiza que golpee el disco. Para que haya colisión,
la distancia entre el punto de intersección pt y el centro del disco c debe ser menor o igual al
radio r.

∥pt − c∥ ≤ r

Computacionalmente, calcular la raíz cuadrada para el módulo de un vector es costoso. Es
preferible comparar los cuadrados de las distancias:

v = pt − c

v · v ≤ r2

(v2
x + v2

y + v2
z) ≤ r2

A continuación, se presenta el algoritmo formal en pseudocódigo:

� �
1 // Estructuras de datos:

2 // Vec3: tupla (x, y, z) con operaciones de suma , resta y

producto punto

3 // Rayo: origen (Vec3), direccion (Vec3)

4 // Disco: centro (Vec3), normal (Vec3), radio (float)

5

6 bool IntersectaDisco(Rayo ray , Disco disco , float &t_salida) {

7 // 1. Calcular el denominador (producto punto entre normal y

direccion)

8 float denom = dot(disco.normal , ray.direccion);

Informática Gráfica Ismael Sallami Moreno

1.9 Sesión 10 132

9

10

11 // Si denom es cercano a 0, el rayo es paralelo al plano

12 if (abs(denom) < 1e-6) {

13 return false;

14 }

15

16 // 2. Calcular el vector desde el origen del rayo al centro

del disco

17 Vec3 vector_origen_centro = disco.centro - ray.origen;

18

19 // 3. Calcular t

20 float t = dot(vector_origen_centro , disco.normal) / denom;

21

22 // Verificar si la interseccion esta detras de la camara

23 if (t < 0) {

24 return false;

25 }

26

27 // 4. Calcular el punto exacto de interseccion en el plano

28 Vec3 p = ray.origen + (ray.direccion * t);

29

30 // 5. Verificar si el punto esta dentro del radio del disco

31 Vec3 v = p - disco.centro;

32 float dist_cuadrada = dot(v, v); // |v|^2

33

34 if (dist_cuadrada <= (disco.radio * disco.radio)) {

35 t_salida = t; // Guardamos la distancia a la colision

36 return true; // Hay interseccion valida

37 }

38

39 return false; // Intersecta el plano , pero fuera del disco

40

41

42

43 }� �
Código 1.1: Algoritmo de Intersección Rayo-Disco

Otro formato del algoritmo en pseudocódigo es el siguiente:

Informática Gráfica Ismael Sallami Moreno

1.9 Sesión 10 133

Algorithm 2 Intersección Rayo-Disco
1: function InterseccionRayoDisco(o, d, c, n, r)
2: denom ← d · n
3: if |denom| < ϵ then
4: return (FALSO, NULO)
5: end if
6: t← (c−o)·n

denom
7: if t < 0 then
8: return (FALSO, NULO)
9: end if

10: p← o + t · d
11: if (p− c) · (p− c) ≤ r2 then
12: return (VERDADERO, p)
13: else
14: return (FALSO, NULO)
15: end if
16: end function

Observación. Sabemos que ε es un valor muy pequeño (por ejemplo, 10−6) para evitar divisiones
por cero numéricas.

Ejercicio 1.9.2

Diseña un algoritmo para calcular la primera intersección entre un rayo (con origen en o y
vector d, normalizado) y una esfera de radio unidad y centro en el origen, si hay alguna.
Ten en cuenta que un punto cualquiera p está en la esfera si y solo si el módulo de p es la
unidad, es decir, si y solo si F (p) = 0, donde F es el campo escalar definido así:

F (p) ≡ p · p− 1

Describe cómo podría usarse ese mismo algoritmo para calcular la intersección con una esfera
con centro y radio arbitrarios (este problema puede reducirse al anterior si el rayo se traslada
a un espacio de coordenadas donde la esfera tiene centro en el origen y radio unidad).

Origen

o

d

p (intersección)

Solución 1.9.2. Para resolver el problema de la intersección entre un rayo y una esfera unitaria
centrada en el origen, se procede algebraicamente sustituyendo la ecuación paramétrica del rayo en
la ecuación implícita de la esfera. El objetivo es hallar el valor del parámetro t (distancia desde el
origen del rayo) donde ocurre el contacto.

1) Planteamiento de las ecuaciones:

Informática Gráfica Ismael Sallami Moreno

1.9 Sesión 10 134

La ecuación del rayo es:
p(t) = o + t · d

donde t ≥ 0.
La ecuación implícita de la esfera unitaria centrada en el origen es:

p · p− 1 = 0 (o bien ∥p∥2 = 1)

2) Sustitución:
Se sustituye p(t) en la ecuación de la esfera:

(o + t · d) · (o + t · d)− 1 = 0

Expandiendo el producto escalar (propiedad distributiva):

(o · o) + 2t(o · d) + t2(d · d)− 1 = 0

3) Simplificación:
Dado que el vector de dirección d está normalizado, sabemos que d · d = 1. La ecuación se
convierte en una ecuación cuadrática de la forma At2 + Bt + C = 0:

t2 + 2(o · d)t + (o · o− 1) = 0

Identificamos los coeficientes:
– A = 1
– B = 2(o · d)
– C = o · o− 1

4) Resolución de la ecuación cuadrática: Observación. Aunque la resolución sea
trivial, se detalla
Usamos la fórmula general para hallar t:

t = −B ±
√

B2 − 4AC

2A

Sustituyendo A = 1, B = 2(o · d), C = o · o− 1:

t = −2(o · d)±
√

4(o · d)2 − 4(o · o− 1)
2

t = −(o · d)±
√

(o · d)2 − (o · o− 1)

5) Interpretación del discriminante (∆):
El término dentro de la raíz es el discriminante: ∆ = (o · d)2 − (o · o− 1).

– Si ∆ < 0: El rayo no toca la esfera (pasa de largo). No hay solución real.
– Si ∆ = 0: El rayo es tangente a la esfera (un punto de contacto).
– Si ∆ > 0: El rayo atraviesa la esfera (dos puntos de contacto, entrada y salida).

Se busca la primera intersección, que corresponde al menor valor positivo de t. Si ambos
t son negativos, la esfera está detrás del origen del rayo.

6) Generalización para Esfera Arbitraria (Centro C, Radio R):
Para reutilizar el algoritmo de la esfera unitaria, se aplica una transformación al rayo para

Informática Gráfica Ismael Sallami Moreno

1.9 Sesión 10 135

llevarlo al ”espacio de la esfera unitaria”.
La ecuación de una esfera genérica es ∥p− C∥2 = R2, que se puede reescribir como:

∥∥∥∥p− C

R

∥∥∥∥2
= 1

Si definimos un nuevo origen de rayo transformado o′:

o′ = o− C

R

El problema se reduce a encontrar la intersección de un rayo que parte de o′ con dirección
d contra la esfera unitaria en el origen. Si el algoritmo base devuelve un parámetro de
intersección tunit, la distancia real treal en el mundo original será:

treal = tunit ×R

Esto se debe a que hemos escalado el espacio dividiendo por R, por lo que las distancias
calculadas están ”comprimidas” y deben restaurarse multiplicando por R.

A continuación, se presenta el pseudocódigo que implementa esta lógica:

� �
1 // Estructuras auxiliares

2 struct Rayo { Vec3 origen; Vec3 direccion; }; // direccion

normalizada

3 struct Esfera { Vec3 centro; float radio; };

4

5 // Algoritmo Base: Interseccion con Esfera Unitaria en (0,0,0)

6 // Retorna true si hay colision , y guarda la distancia en t_out

7 bool IntersectaEsferaUnidad(Vec3 o, Vec3 d, float &t_out) {

8 // Coeficientes de la ecuacion t^2 + Bt + C = 0

9 // A es 1 porque d esta normalizado

10 float B = 2.0f * dot(o, d);

11 float C = dot(o, o) - 1.0f;

12

13 float discriminante = (B * B) - (4.0f * C);

14

15 if (discriminante < 0.0f) return false; // No hay

interseccion

16

17 float raiz = sqrt(discriminante);

18

19 // Soluciones de la ecuacion

20 float t0 = (-B - raiz) / 2.0f; // Entrada (mas cercana)

21 float t1 = (-B + raiz) / 2.0f; // Salida (mas lejana)

22

23 // Verificar orden y positividad para encontrar la primera

valida

24 if (t0 > 0.001f) {

25 t_out = t0;

Informática Gráfica Ismael Sallami Moreno

1.9 Sesión 10 136

26 return true;

27 }

28 if (t1 > 0.001f) {

29 t_out = t1;

30 return true; // El origen esta dentro de la esfera

31 }

32

33 return false; // Ambas intersecciones estan detras del rayo

34 }

35

36 // Algoritmo General: Reduccion al caso unitario

37 bool IntersectaEsferaGenerica(Rayo ray , Esfera esf , float &

t_real) {

38 // 1. Transformar el origen del rayo al espacio de la esfera

unitaria

39 // Se traslada el mundo para que el centro sea (0,0,0) y se

escala por 1/R

40 Vec3 o_prima = (ray.origen - esf.centro) / esf.radio;

41

42 // La direccion d no se escala para mantener la coherencia

geometrica

43 // del rayo , pero esto implica que el 't' resultante estara

escalado.

44

45 float t_unit;

46 if (IntersectaEsferaUnidad(o_prima , ray.direccion , t_unit))

{

47 // 2. Escalar la distancia resultante para volver al

mundo real

48 t_real = t_unit * esf.radio;

49 return true;

50 }

51

52 return false;

53 }� �
Código 1.2: Algoritmo de Intersección Rayo-Esfera

Informática Gráfica Ismael Sallami Moreno

1.9 Sesión 10 137

Ejercicio 1.9.3

Se pide:

Parte 1: Cilindro. Describa cómo se puede definir el campo escalar cuyos ceros corresponden
a los puntos de un cilindro de altura unidad y radio unidad (sin considerar las tapas). Utilizando
esa definición, diseñe un algoritmo para calcular la intersección rayo-cilindro.
Parte 2: Cono. Describa asimismo el campo escalar y el algoritmo correspondientes a un
cono de altura unidad y radio de la base unidad (sin considerar el disco de la base).

Cilindro (r = 1, h = 1)

y

x

Cono (r = 1, h = 1)

y

Rayo

Solución 1.9.3. Este problema aborda la intersección con superficies cuádricas canónicas (cilindros y
conos) acotadas espacialmente. A diferencia de la esfera, estas superficies son infinitas por definición
algebraica, por lo que el algoritmo debe incorporar un paso adicional de ”recorte” (clipping) para
respetar la altura finita. Asumiremos, por convención estándar en gráficos, que ambos objetos están
alineados con el eje Y .

1) Definición del Campo Escalar para el Cilindro:
Un cilindro infinito de radio r = 1 alineado con el eje Y cumple que, para cualquier punto
p = (x, y, z) en su superficie, la distancia horizontal al eje Y es 1.

x2 + z2 = 1

Por lo tanto, el campo escalar Fcyl(p) se define como:

Fcyl(p) ≡ x2 + z2 − 1

Los ceros de este campo (Fcyl(p) = 0) definen la superficie del cilindro infinito. Para obtener
el cilindro de altura unidad, se añade la condición de restricción:

0 ≤ y ≤ 1

2) Algoritmo de Intersección Rayo-Cilindro:
Sea el rayo p(t) = o + t · d, donde o = (ox, oy, oz) y d = (dx, dy, dz). Sustituimos las
coordenadas del rayo en la ecuación implícita x2 + z2 − 1 = 0:

(ox + tdx)2 + (oz + tdz)2 − 1 = 0

Expandiendo y agrupando términos por potencias de t, obtenemos una ecuación cuadrática
At2 + Bt + C = 0:

– A = d2
x + d2

z

– B = 2(oxdx + ozdz)
– C = o2

x + o2
z − 1

Informática Gráfica Ismael Sallami Moreno

1.9 Sesión 10 138

Se resuelve para t. Si existen soluciones reales t0, t1, se calcula el punto de impacto phit =
o + t · d. Finalmente, se descarta la intersección si la componente y de phit no cumple
0 ≤ py ≤ 1.

3) Definición del Campo Escalar para el Cono:
Un cono infinito alineado con el eje Y , con vértice en el origen y que pasa por (1, 1, 0), tiene
una pendiente de 1 (radio/altura = 1/1). La relación es que el radio horizontal

√
x2 + z2 es

igual a la altura y.
x2 + z2 = y2

El campo escalar Fcone(p) es:

Fcone(p) ≡ x2 + z2 − y2

Con la restricción de altura 0 ≤ y ≤ 1 (y asumiendo la hoja superior del cono, y ≥ 0).
4) Algoritmo de Intersección Rayo-Cono:

Sustituyendo el rayo en x2 + z2 − y2 = 0:

(ox + tdx)2 + (oz + tdz)2 − (oy + tdy)2 = 0

Esto genera nuevamente coeficientes para la ecuación cuadrática:
– A = d2

x + d2
z − d2

y

– B = 2(oxdx + ozdz − oydy)
– C = o2

x + o2
z − o2

y

Se resuelve para t, se obtiene phit y se verifica que 0 ≤ py ≤ 1.

A continuación, el pseudocódigo unificado para ambas estructuras:

� �
1 // TipoObjeto: CILINDRO o CONO

2 bool IntersectaCuadrica(Rayo ray , TipoObjeto tipo , float &t_out)

{

3 float A, B, C;

4 float ox = ray.origen.x, oz = ray.origen.z, oy = ray.origen.

y;

5 float dx = ray.direccion.x, dz = ray.direccion.z, dy = ray.

direccion.y;

6 if (tipo == CILINDRO) {

7 // x^2 + z^2 - 1 = 0

8 A = dx*dx + dz*dz;

9 B = 2*(ox*dx + oz*dz);

10 C = ox*ox + oz*oz - 1;

11 } else { // CONO

12 // x^2 + z^2 - y^2 = 0

13 A = dx*dx + dz*dz - dy*dy;

14 B = 2*(ox*dx + oz*dz - oy*dy);

15 C = ox*ox + oz*oz - oy*oy;

16 }

17

18 float discrim = B*B - 4*A*C;

19 if (discrim < 0) return false; // No hay interseccion con la

Informática Gráfica Ismael Sallami Moreno

1.9 Sesión 10 139

superficie infinita

20

21 float raiz = sqrt(discrim);

22 float t0 = (-B - raiz) / (2*A);

23 float t1 = (-B + raiz) / (2*A);

24

25 // Buscar la interseccion mas cercana que este dentro de la

altura

26 float t_candidata = t0;

27 if (t0 < 0.001) t_candidata = t1;

28 if (t_candidata < 0.001) return false;

29

30 // Calcular la altura del punto de impacto

31 float y_impacto = oy + t_candidata * dy;

32

33 // VALIDACION DE ALTURA (Clipping)

34 // El cilindro y el cono tienen altura 1 (de y=0 a y=1)

35 if (y_impacto >= 0.0 && y_impacto <= 1.0) {

36 t_out = t_candidata;

37 return true;

38 }

39

40 // Si t0 falla , probamos con t1 (podria ser que entramos por

arriba/abajo)

41 // Nota: Esto es necesario si estamos dentro del objeto o

para el ''lado lejano ''

42 y_impacto = oy + t1 * dy;

43 if (t1 > 0.001 && y_impacto >= 0.0 && y_impacto <= 1.0) {

44 t_out = t1;

45 return true;

46 }

47

48 return false;

49 }� �
Código 1.3: Algoritmo Genérico para Cuádricas Acotadas

Informática Gráfica Ismael Sallami Moreno

1.10 Sesión 11 140

1.10 Sesión 11
Ejercicio 1.10.1

Implementar un proyecto en Godot en el cual el nodo raíz tiene un script que define dos arrays
con: una serie de n puntos p0, p1, . . . , pn−1 del plano y = 0, y una serie de instantes de tiempo
t0, t1, . . . , tn−1 (en segundos) con t0 = 0.

1) Sitúa en cada uno de esos puntos un disco pequeño visible, a modo de marcador.
2) Incluye una función para calcular la posición y velocidad de la curva de Hermite que

pasa por los puntos en los instantes dados, a partir de un t en [0, tn−1].
3) En cada punto pi el vector de velocidad vi se calcula a partir de los puntos anterior y

siguiente.
4) En el método _process(delta) del script, calcula la posición y velocidad de la curva

en el tiempo transcurrido desde el inicio, y mueve un objeto (un coche, por ejemplo) a
esa posición, alineado con la dirección de la curva.

Solución 1.10.1. Se presenta a continuación la resolución detallada del problema, fundamentada
en la teoría de curvas paramétricas y Splines Cúbicos de Hermite expuesta en las diapositivas del
curso (páginas 63-91).

1. Fundamentos Teóricos: Interpolación de Hermite a Trozos

Para definir una trayectoria suave que pase por una secuencia de puntos p0, . . . , pn−1 en tiempos
específicos, se utiliza una curva definida a trozos. Para un instante de tiempo t que se encuentra en
el intervalo [ti, ti+1], la posición se obtiene interpolando entre pi y pi+1 considerando las velocidades
(tangentes) vi y vi+1 en dichos puntos.

Se definen las siguientes variables auxiliares para el i-ésimo intervalo:

– La duración del intervalo: si = ti+1 − ti.
– El parámetro normalizado de tiempo: u = t−ti

si
, donde 0 ≤ u ≤ 1.

La ecuación vectorial para la posición P (t) en este intervalo viene dada por la combinación lineal
de las bases de Hermite:

P (t) = pih00(u) + pi+1h01(u) + sivih10(u) + sivi+1h11(u) (1.9)

Es crucial notar que las velocidades v se multiplican por la duración del intervalo si para ajustar la
magnitud de la tangente al dominio normalizado [0, 1]. Las funciones base son:

h00(u) = 2u3 − 3u2 + 1
h01(u) = −2u3 + 3u2

h10(u) = u3 − 2u2 + u

h11(u) = u3 − u2

2. Cálculo Automático de Velocidades (Tangentes)

Dado que el enunciado no proporciona las velocidades explícitas, estas se calculan numéricamente
para asegurar que la curva sea suave (continuidad C1) en los puntos de unión. Se utiliza el método

Informática Gráfica Ismael Sallami Moreno

1.10 Sesión 11 141

de diferencias finitas centradas (Catmull-Rom):

vi = pi+1 − pi−1

ti+1 − ti−1
, para 0 < i < n− 1 (1.10)

Para los puntos extremos (i = 0 e i = n− 1), se asume velocidad nula (v = 0) o se puede usar una
diferencia simple, pero el enunciado sugiere seguir el ejemplo de suavizado estándar.

3. Representación Visual de la Trayectoria

La siguiente figura ilustra la geometría del problema: los puntos de control (rojos) definen el paso
obligado, mientras que los vectores de velocidad calculados (azules) definen la curvatura en dichos
puntos.

p0, t0

p1, t1

p2, t2

p3, t3v1
v2

v1 ∥ (p2 − p0)

4. Implementación en GDScript

El siguiente código implementa la lógica completa. Se asume que este script se adjunta al nodo raíz
de la escena y que existe un nodo hijo llamado ”Coche” (MeshInstance3D o similar).

Código 1.4: Script de Interpolación Hermite� �
1 extends Node3D

2

3 # Datos de entrada: Puntos de paso y sus instantes de tiempo

4 var puntos = [

5 Vector3(0, 0, 0),

6 Vector3(4, 0, 4),

7 Vector3(8, 0, -2),

8 Vector3 (12, 0, 5)

9]

10 var tiempos = [0.0, 2.0, 5.0, 8.0] # t0 debe ser 0.0

11

12 # Almacen de velocidades calculadas

13 var velocidades = []

14

15 # Referencia al objeto visual (el coche)

16 onready var objeto_movil = $Coche

17 var tiempo_actual = 0.0

18

Informática Gráfica Ismael Sallami Moreno

1.10 Sesión 11 142

19 func _ready ():

20 # 1. Calcular tangentes automaticamente

21 calcular_velocidades_hermite ()

22

23 # 2. Visualizar marcadores (discos)

24 crear_marcadores_visuales ()

25

26 func calcular_velocidades_hermite ():

27 var n = puntos.size()

28 velocidades.resize(n)

29

30 # Velocidad 0 en extremos (arranque y parada suave)

31 velocidades [0] = Vector3.ZERO

32 velocidades[n-1] = Vector3.ZERO

33

34 # Calculo para puntos intermedios: v_i = (p_next - p_prev) /

(t_next - t_prev)

35 for i in range(1, n - 1):

36 var dist_vector = puntos[i+1] - puntos[i-1]

37 var intervalo_t = tiempos[i+1] - tiempos[i-1]

38 velocidades[i] = dist_vector / intervalo_t

39

40 func crear_marcadores_visuales ():

41 for p in puntos:

42 var marcador = CSGCylinder3D.new()

43 marcador.radius = 0.3

44 marcador.height = 0.1

45 marcador.material = StandardMaterial3D.new()

46 marcador.material.albedo_color = Color(1, 0, 0) # Rojo

47 add_child(marcador)

48 marcador.global_position = p

49

50 # Funcion principal de interpolacion

51 func obtener_posicion_velocidad(t):

52 var n = puntos.size()

53

54 # Caso limite: si t supera el tiempo final

55 if t >= tiempos[n-1]:

56 return {''pos'': puntos[n-1], ''dir'': Vector3.FORWARD}

57

58 # Buscar el intervalo [i, i+1] correspondiente al tiempo t

59 var i = 0

60 while i < n - 1 and t > tiempos[i+1]:

61 i += 1

62

63 # Datos del tramo actual

64 var p0 = puntos[i]

65 var p1 = puntos[i+1]

Informática Gráfica Ismael Sallami Moreno

1.10 Sesión 11 143

66 var v0 = velocidades[i]

67 var v1 = velocidades[i+1]

68 var t0 = tiempos[i]

69 var t1 = tiempos[i+1]

70

71 # Parametro u normalizado (0 a 1)

72 var s = t1 - t0 # Duracion del intervalo

73 var u = (t - t0) / s

74

75 # Pre-calculo de potencias de u

76 var u2 = u * u

77 var u3 = u2 * u

78

79 # Funciones base de Hermite (h00 , h10 , h01 , h11)

80 var h00 = 2*u3 - 3*u2 + 1

81 var h10 = u3 - 2*u2 + u

82 var h01 = -2*u3 + 3*u2

83 var h11 = u3 - u2

84

85 # Interpolacion de la Posicion (notese v * s para escalar la

tangente)

86 var pos = h00*p0 + h10*s*v0 + h01*p1 + h11*s*v1

87

88 # Calculo de la velocidad instantanea (Derivada de P

respecto a t)

89 # Derivadas de las bases respecto a u:

90 var dh00 = 6*u2 - 6*u

91 var dh10 = 3*u2 - 4*u + 1

92 var dh01 = -6*u2 + 6*u

93 var dh11 = 3*u2 - 2*u

94

95 # v(t) = P '(u) * (du/dt) = P '(u) * (1/s)

96 var vel = (dh00*p0 + dh10*s*v0 + dh01*p1 + dh11*s*v1) / s

97

98 return {''pos'': pos , ''dir'': vel}

99

100 func _process(delta):

101 tiempo_actual += delta

102

103 # Reiniciar bucle si termina

104 if tiempo_actual > tiempos.back():

105 tiempo_actual = 0.0

106

107 # Calcular estado fisico

108 var estado = obtener_posicion_velocidad(tiempo_actual)

109

110 # Aplicar transformaciones

111 if objeto_movil:

Informática Gráfica Ismael Sallami Moreno

1.10 Sesión 11 144

112 objeto_movil.global_position = estado[''pos'']

113

114 # Orientar el objeto segun el vector de velocidad (

tangente)

115 # Se evita el error si la velocidad es muy cercana a

cero

116 if estado[''dir'']. length_squared () > 0.001:

117 var objetivo_mirar = estado[''pos''] + estado[''dir'

']

118 objeto_movil.look_at(objetivo_mirar , Vector3.UP)� �

Explicación Paso a Paso del Código

1) Inicialización (_ready): Se calculan las velocidades (tangentes) en cada punto de control
usando diferencias centradas, y se crean los marcadores visuales en la escena para cada
punto.

2) Cálculo de Velocidades: Para los puntos intermedios, la velocidad se obtiene como el
cociente entre la diferencia de posiciones y la diferencia de tiempos de los puntos anterior y
siguiente. En los extremos, se asigna velocidad cero.

3) Interpolación Hermite: La función principal busca el intervalo de tiempo correspondiente
y normaliza el parámetro temporal (u) al rango [0, 1]. Se aplican las bases polinómicas de
Hermite para calcular la posición y la velocidad instantánea en ese tramo.

4) Actualización por Frame (_process): En cada fotograma, se incrementa el tiempo, se
calcula la posición y dirección de la curva en ese instante, y se mueve el objeto (por ejemplo,
un coche) a esa posición, orientándolo según la dirección de la curva usando look_at.

Ejercicio 1.10.2

Crea un proyecto Godot con una animación de una esfera cuya posición en X oscile periódica-
mente, con estas condiciones:

1) El centro de la esfera tiene coordenada Z igual a 0, su coordenada Y es igual al radio,
y su coordenada X varía entre −s y +s, donde s > 0 es una constante declarada en el
script.

2) El período (tiempo en volver al mismo punto viajando en la misma dirección) es una
constante T > 0 declarada en el script (con unidades de segundos).

3) La esfera se mueve siempre a velocidad constante en magnitud (es siempre s/T), y el
signo depende de la dirección.

4) Tu animación debe producir esa velocidad constante, incluso teniendo en cuenta que
los sucesivos valores de delta pueden cambiar entre frames.

5) Especialmente, la magnitud de la velocidad debe ser constante aunque entre dos frames
haya ocurrido un cambio de dirección en un extremo.

Solución 1.10.2. Se aborda la resolución de este problema mediante la programación de un script
en GDScript, gestionando manualmente la actualización de la posición en cada fotograma para
garantizar una velocidad constante y un rebote preciso en los extremos.

Informática Gráfica Ismael Sallami Moreno

1.10 Sesión 11 145

1. Análisis del Movimiento y Velocidad

El movimiento solicitado describe una onda triangular. La esfera oscila entre −s y +s. Un ciclo
completo (Período T) consiste en el recorrido:

0→ +s→ 0→ −s→ 0

La distancia total recorrida en un ciclo es D = s + s + s + s = 4s.

Para que este ciclo se complete exactamente en T segundos con velocidad uniforme, la magnitud de
la velocidad (v) debe ser:

v = Distancia Total
Tiempo = 4s

T
(1.11)

Nota técnica: El enunciado indica entre paréntesis que la velocidad es s/T . Sin embargo, matemáti-
camente, si la velocidad fuera s/T , el objeto tardaría 4T en completar el ciclo en lugar de T . En
esta solución se prioriza el cumplimiento del Período T , por lo que se utilizará v = 4s/T .

2. Algoritmo de Actualización y Corrección de ”Overshoot”

El reto principal en sistemas de tiempo real (como el método _process de Godot) es que el tiempo
entre frames (delta) es variable. Si el objeto está cerca de un extremo (por ejemplo, x = 4,9 y
s = 5,0) y el siguiente paso es grande (0.2), la posición teórica sería 5,1, excediendo el límite.

Para mantener la velocidad constante y la precisión:

1) Se calcula el desplazamiento propuesto: ∆x = v · δ.
2) Se suma a la posición actual.
3) Si la nueva posición excede los límites (s o −s), se calcula el exceso (overshoot).
4) Se ”refleja” el exceso hacia adentro del intervalo y se invierte la dirección. Esto simula que el

rebote ocurrió en el instante exacto entre los frames.

3. Implementación en GDScript

El siguiente código se debe adjuntar a un nodo en la escena (por ejemplo, un Node3D) que contenga
un hijo llamado ”Esfera” (visualización).

Código 1.5: Script de Oscilación Triangular Controlada� �
1 extends Node3D

2

3 # Variables de configuracion (exportadas para editar en el

inspector)

4 export var s: float = 5.0 # Amplitud maxima (metros)

5 export var T: float = 2.0 # Periodo completo (segundos)

6 export var radio: float = 0.5 # Radio visual de la esfera

7

8 # Variables de estado

9 var x_actual: float = 0.0

10 var direccion: int = 1 # 1: Derecha , -1: Izquierda

Informática Gráfica Ismael Sallami Moreno

1.10 Sesión 11 146

11 var velocidad: float = 0.0 # Magnitud de la velocidad

12

13 # Referencia al nodo visual

14 onready var esfera = $Esfera

15

16 func _ready ():

17 # Calculo de la velocidad necesaria para cumplir el periodo

T

18 # Distancia total por ciclo = 4 * s

19 if T > 0:

20 velocidad = (4.0 * s) / T

21 else:

22 velocidad = 0.0

23

24 # Ajuste visual inicial

25 if esfera:

26 # Si es un CSGSphere3D , ajustamos el radio propiedad

27 if ''radius '' in esfera:

28 esfera.radius = radio

29 # Posicion inicial

30 esfera.position = Vector3(0, radio , 0)

31

32 func _process(delta):

33 # 1. Calcular el paso teorico en este frame

34 var distancia_paso = velocidad * delta

35

36 # 2. Aplicar movimiento

37 x_actual += distancia_paso * direccion

38

39 # 3. Verificacion de limites y correccion de rebote

40

41 # Limite derecho (+s)

42 if x_actual > s:

43 var exceso = x_actual - s

44 x_actual = s - exceso # Reflejar el exceso hacia atras

45 direccion = -1 # Invertir direccion

46

47 # Limite izquierdo (-s)

48 elif x_actual < -s:

49 var exceso = -s - x_actual # Cuanto nos pasamos por la

izquierda

50 x_actual = -s + exceso # Reflejar el exceso hacia

delante

51 direccion = 1 # Invertir direccion

52

53 # 4. Actualizar la posicion del nodo visual

54 if esfera:

55 esfera.position.x = x_actual

Informática Gráfica Ismael Sallami Moreno

1.10 Sesión 11 147

56 esfera.position.y = radio

57 esfera.position.z = 0.0� �
Este algoritmo asegura que la magnitud de la velocidad se mantenga constante en todo momento,
respetando la física del rebote perfecto sin perder tiempo ni energía en los extremos.

Ejercicio 1.10.3

Desarrolla un proyecto Godot para el ejemplo de animación de un reloj con tres agujas. Las
condiciones especificadas en la teoría son:

1) Se desea visualizar un reloj con tres agujas: horas, minutos y segundos.
2) Cada aguja se modela como una malla de polígonos en posición vertical (paralelo al eje

Y), con el origen en el punto del eje del reloj.
3) Se usan matrices de rotación en torno al eje Z.
4) Los ángulos de rotación dependen linealmente del tiempo t (segundos transcurridos

desde el comienzo del día).

Solución 1.10.3. Se procede a la implementación de un sistema de animación jerárquica para simular
un reloj analógico funcional en tiempo real. La solución se basa en la aplicación directa de las
transformaciones de rotación descritas en las diapositivas 32 a 35 del material de curso.

1. Modelo Matemático: Ángulos y Tiempo

Según la teoría, el estado de las agujas está determinado por tres ángulos θh, θm, θs que son funciones
lineales del tiempo t. El tiempo t representa los segundos totales transcurridos en el ciclo actual (el
ciclo de 12 horas para la aguja horaria).

Las relaciones angulares (en radianes) son:

– Segundero (θs): Da una vuelta completa (2π) cada 60 segundos.

θs(t) = 2π

60 · t (1.12)

– Minutero (θm): Da una vuelta completa cada hora (602 = 3600 segundos).

θm(t) = 2π

3600 · t (1.13)

– Horario (θh): Da una vuelta completa cada 12 horas (12 · 602 = 43200 segundos).

θh(t) = 2π

43200 · t (1.14)

Nota de implementación: En la convención estándar matemática y de Godot, una rotación positiva
en el eje Z es antihoraria. Dado que los relojes giran en sentido horario, aplicaremos el signo negativo
a estos ángulos en el código (rotación = −θ).

Informática Gráfica Ismael Sallami Moreno

1.10 Sesión 11 148

2. Estructura del Grafo de Escena

Para cumplir con el requisito de que las agujas tengan su origen en el eje de rotación pero se
extiendan a lo largo del eje Y positivo, utilizaremos una jerarquía de nodos:

1) Nodo Raíz (Reloj): Contenedor principal.
2) Pivotes (Node3D): Tres nodos hijos situados en (0, 0, 0). Estos nodos serán los que roten.
3) Mallas (MeshInstance3D): Hijos de los pivotes. Se desplazarán verticalmente (offset)

para que su base coincida con el pivote, logrando el efecto de girar desde el extremo.

3. Implementación en GDScript

El siguiente script crea la geometría procedimentalmente (para facilitar la prueba sin modelos
externos) y aplica la lógica de rotación basada en la hora del sistema.

Código 1.6: Script del Reloj Analógico� �
1 extends Node3D

2

3 # Referencias a los nodos de las agujas (Pivotes)

4 var pivote_segundos: Node3D

5 var pivote_minutos: Node3D

6 var pivote_horas: Node3D

7

8 func _ready ():

9 # 1. Construccion procedimental de la escena

10 crear_geometria_reloj ()

11

12 func crear_geometria_reloj ():

13 # Creamos una esfera central como base

14 var esfera = CSGSphere3D.new()

15 esfera.radius = 0.5

16 add_child(esfera)

17

18 # Creamos las tres agujas.

19 # Usamos una funcion auxiliar para configurar: (Nombre ,

Largo , Ancho , Color)

20 pivote_horas = crear_aguja(''Horas '', 2.0, 0.2, Color.black)

21 pivote_minutos = crear_aguja(''Minutos '', 3.0, 0.15, Color.

darkgray)

22 pivote_segundos = crear_aguja(''Segundos '', 3.5, 0.05, Color

.red)

23

24 func crear_aguja(nombre , largo , ancho , color) -> Node3D:

25 # 1. El Pivote: Este nodo estara en (0,0,0) y es el que

rotamos

26 var pivote = Node3D.new()

27 pivote.name = ''Pivote '' + nombre

Informática Gráfica Ismael Sallami Moreno

1.10 Sesión 11 149

28 add_child(pivote)

29

30 # 2. La Malla Visual: Hija del pivote

31 var mesh = CSGBox3D.new()

32 mesh.size = Vector3(ancho , largo , 0.1)

33

34 # IMPORTANTE: Desplazamos la malla hacia arriba (Y+) la

mitad de su largo.

35 # Asi , el centro de rotacion (el pivote) queda en la base de

la aguja.

36 mesh.position = Vector3(0, largo / 2.0, 0)

37

38 # Material

39 var material = StandardMaterial3D.new()

40 material.albedo_color = color

41 mesh.material = material

42

43 pivote.add_child(mesh)

44 return pivote

45

46 func _process(delta):

47 # 1. Obtener el tiempo actual del sistema

48 var tiempo = Time.get_time_dict_from_system ()

49 var horas = tiempo[''hour'']

50 var minutos = tiempo[''minute '']

51 var segundos = tiempo[''second '']

52

53 # 2. Calcular t (segundos totales desde las 12:00)

54 # Ajustamos horas a formato 12h para la formula

55 horas = horas % 12

56

57 # Calculo de alta precision para movimiento suave (

incluyendo milisegundos si se quisiera)

58 # t para segundos (ciclo 60s)

59 var t_sec = segundos

60 # t para minutos (ciclo 3600s). Sumamos segundos para

movimiento continuo

61 var t_min = (minutos * 60.0) + segundos

62 # t para horas (ciclo 43200s). Sumamos minutos y segundos

63 var t_hour = (horas * 3600.0) + (minutos * 60.0) + segundos

64

65 # 3. Calcular angulos (Theta) usando las formulas de la

teoria

66 # Theta = (2 * PI / Periodo) * t

67 # Usamos negativo para rotacion en sentido horario (

Clockwise)

68

69 var theta_s = -(2.0 * PI / 60.0) * t_sec

Informática Gráfica Ismael Sallami Moreno

1.10 Sesión 11 150

70 var theta_m = -(2.0 * PI / 3600.0) * t_min

71 var theta_h = -(2.0 * PI / 43200.0) * t_hour

72

73 # 4. Aplicar rotacion en el eje Z

74 if pivote_segundos:

75 pivote_segundos.rotation.z = theta_s

76 if pivote_minutos:

77 pivote_minutos.rotation.z = theta_m

78 if pivote_horas:

79 pivote_horas.rotation.z = theta_h� �

4. Análisis del Código

1) Generación de Geometría: Se sigue la especificación de la diapositiva 35: un nodo raíz (la
esfera central) y un nodo para cada aguja. Dentro de cada aguja, se separa la transformación
(el Pivote) de la geometría (la Malla). El desplazamiento mesh.position.y = largo / 2.0

es crítico para que la rotación ocurra en el extremo de la aguja y no en su centro geométrico.
2) Cálculo del Tiempo (t): En lugar de un acumulador simple delta, utilizamos Time.get_-

time_dict_from_system(). Esto sincroniza la animación con la hora real. Para las agujas
de minutos y horas, se suman las fracciones correspondientes de las unidades menores (por
ejemplo, a los minutos se le suman los segundos convertidos) para lograr un movimiento
fluido y realista, en lugar de saltos discretos.

3) Aplicación de la Rotación: Se asignan los ángulos calculados a la propiedad rotation.z.
El signo negativo asegura que el giro sea en el sentido de las agujas del reloj, corrigiendo la
convención matemática estándar (antihoraria) del sistema de coordenadas de Godot.

Ejercicio 1.10.4

Desarrolla un proyecto Godot para el ejemplo de animación de un péndulo. Las condiciones
teóricas especificadas son:

1) El péndulo consiste en una masa colgando de un punto fijo por una cuerda de longitud
l.

2) El ángulo θ entre la cuerda y la vertical varía con el tiempo t.
3) La oscilación es periódica con un período T > 0 (tiempo en segundos para completar

un ciclo).
4) El ángulo oscila entre −θm y θm.
5) La función que describe el ángulo es θ(t) = θm · sin

(2πt
T

)
(o una variante cosinusoidal

equivalente).

Solución 1.10.4. Se detalla a continuación la implementación de un péndulo físico simple utilizando
animación procedimental en Godot. La solución aplica las fórmulas de oscilación armónica descritas
en las diapositivas 36 a 38 del material de referencia.

1. Modelo Matemático del Movimiento

El movimiento del péndulo se modela mediante una función sinusoidal que define el ángulo de
rotación θ(t) en el eje Z.

Informática Gráfica Ismael Sallami Moreno

1.10 Sesión 11 151

Según la teoría proporcionada:

– Se define una función base oscilante f(t) = sin(πt) que tiene un período de 2 unidades.
– Para adaptar esta función a un período arbitrario T , se escala el tiempo: θ(t) = θmax · f(2t

T).

Sustituyendo la función base, obtenemos la fórmula final para la implementación:

θ(t) = θmax · sin
(

π · 2t

T

)
= θmax · sin

(
2πt

T

)
(1.15)

Donde:

– θmax es la amplitud máxima (en radianes).
– T es el período de oscilación (en segundos).
– t es el tiempo acumulado.

2. Estructura del Grafo de Escena

Para simular correctamente el péndulo, es fundamental establecer la jerarquía de nodos adecuada,
ya que la rotación debe ocurrir en el punto de anclaje (extremo superior) y no en el centro de masa
del péndulo.

1) Nodo Raíz (Soporte): Punto fijo en el espacio.
2) Pivote (Node3D): Hijo del soporte. Este nodo se ubica en (0, 0, 0) relativo al soporte y es

el que recibirá la rotación θ(t).
3) Varilla (MeshInstance3D): Hija del Pivote. Se desplaza verticalmente hacia abajo (eje Y

negativo) una distancia L/2 y se escala para tener longitud L.
4) Masa/Bob (MeshInstance3D): Hija del Pivote (o de la varilla). Se desplaza verticalmente

hacia abajo una distancia L.

3. Implementación en GDScript

El siguiente script se debe adjuntar al nodo Pivote. Este script genera la geometría visual
procedimentalmente para facilitar la prueba y aplica la fórmula de oscilación.

Código 1.7: Script del Péndulo Oscilante� �
1 extends Node3D

2

3 # Parametros fisicos configurables

4 export var theta_max_degrees: float = 45.0 # Amplitud maxima en

grados

5 export var periodo: float = 2.0 # Periodo T en

segundos

6 export var longitud_cuerda: float = 3.0 # Longitud L

7

8 # Variables internas

9 var tiempo_acumulado: float = 0.0

10 var theta_max_rad: float = 0.0

11

Informática Gráfica Ismael Sallami Moreno

1.10 Sesión 11 152

12 # Referencias a los nodos visuales (se crearan por codigo si no

existen)

13 var varilla: CSGBox3D

14 var masa: CSGSphere3D

15

16 func _ready ():

17 # Convertir grados a radianes para las funciones

trigonometricas

18 theta_max_rad = deg_to_rad(theta_max_degrees)

19

20 # Construccion procedimental del pendulo visual

21 construir_geometria ()

22

23 func construir_geometria ():

24 # 1. Crear la varilla (Cuerda)

25 varilla = CSGBox3D.new()

26 varilla.size = Vector3 (0.1, longitud_cuerda , 0.1) # Grosor y

largo

27

28 # IMPORTANTE: Desplazar la varilla hacia abajo la mitad de

su longitud.

29 # Asi , el extremo superior coincide con el origen del Pivote

(0,0,0).

30 varilla.position = Vector3(0, -longitud_cuerda / 2.0, 0)

31

32 # Material visual para la varilla

33 var mat_varilla = StandardMaterial3D.new()

34 mat_varilla.albedo_color = Color.gray

35 varilla.material = mat_varilla

36

37 add_child(varilla)

38

39 # 2. Crear la masa (Esfera en el extremo)

40 masa = CSGSphere3D.new()

41 masa.radius = 0.4

42

43 # La masa se coloca al final de la cuerda

44 masa.position = Vector3(0, -longitud_cuerda , 0)

45

46 # Material visual para la masa

47 var mat_masa = StandardMaterial3D.new()

48 mat_masa.albedo_color = Color.red

49 masa.material = mat_masa

50

51 add_child(masa)

52

53 func _process(delta):

54 # 1. Acumular el tiempo

Informática Gráfica Ismael Sallami Moreno

1.10 Sesión 11 153

55 tiempo_acumulado += delta

56

57 # Opcional: Evitar desbordamiento de float reseteando cada

periodo

58 if tiempo_acumulado > periodo:

59 tiempo_acumulado -= periodo

60

61 # 2. Calcular el angulo actual usando la formula armonica

62 # theta(t) = theta_max * sin(2 * PI * t / T)

63 var theta = theta_max_rad * sin ((2.0 * PI * tiempo_acumulado

) / periodo)

64

65 # 3. Aplicar la rotacion al Pivote

66 # Se rota en el eje Z para oscilar izquierda-derecha

67 rotation.z = theta� �

4. Explicación del Código

– Setup (_ready): Se convierten los grados a radianes, ya que las funciones matemáticas de
Godot y la propiedad rotation trabajan en radianes. Se invoca la construcción de la malla.

– Geometría (construir_geometria): Se crean primitivas CSG. El punto clave es varilla.position.y
= -longitud_cuerda / 2.0. Esto asegura que, aunque el centro geométrico del cubo está
en su mitad, visualmente la varilla ”cuelga” del nodo padre (el Pivote en 0,0,0). La masa se
coloca en -longitud_cuerda.

– Animación (_process):
1) Se actualiza el tiempo t.
2) Se calcula el valor de la función seno, que oscilará suavemente entre −1 y +1.
3) Se multiplica por θmax para escalar la oscilación a la amplitud deseada.
4) Se asigna directamente a rotation.z. Al ser este nodo el padre de la varilla y la masa,

ambos rotarán rígidamente alrededor del punto de anclaje, simulando la física del
péndulo.

Ejercicio 1.10.5

Desarrolla un proyecto Godot para el ejemplo de animación de una bala de cañón. Las
condiciones y supuestos teóricos son:

1) La bola sale del cañón en una posición inicial p(0) y con una velocidad inicial conocida
v0.

2) La bola está sujeta a la gravedad (g = 9,8 m/s2).
3) No se consideran efectos de fricción con el aire.
4) La animación simula la trayectoria hasta que la bola vuelve a la altura inicial.
5) Se utiliza la ecuación de la curva paramétrica: p(t) = p(0) + v0t + 1

2 at2, donde a =
(0,−g, 0).

Solución 1.10.5. Se presenta la implementación de la trayectoria parabólica de un proyectil. A
diferencia de las simulaciones físicas que integran la velocidad frame a frame (Euler), este ejercicio
pide implementar la solución analítica exacta (curva paramétrica) dependiente del tiempo acumulado

Informática Gráfica Ismael Sallami Moreno

1.10 Sesión 11 154

t.

1. Modelo Físico-Matemático

La posición p(t) en el instante t se calcula mediante la fórmula vectorial del movimiento uniforme-
mente acelerado:

p(t) = p0 + v0 · t + 1
2 · a⃗ · t

2 (1.16)

Desglosando los componentes:

– Vector aceleración (a⃗): Si la gravedad actúa hacia abajo en el eje Y, entonces a⃗ =
(0,−9,8, 0).

– Vector velocidad inicial (v0): (vx, vy, vz). Es crucial que vy > 0 para que haya un arco
parabólico.

– Duración del vuelo: El proyectil vuelve a la altura y = 0 (suponiendo p0 = 0) en el instante
tfin = 2v0y

g .

2. Configuración de la Escena

1) Nodo Raíz (Node3D): Controlador de la escena.
2) Suelo (CSGBox3D): Referencia visual estática.
3) Bala (MeshInstance3D o CSGSphere3D): El objeto móvil. Inicialmente en (0, 0, 0).

3. Implementación en GDScript

El siguiente script controla la posición absoluta de la bala basándose en el tiempo transcurrido
desde el disparo.

Código 1.8: Script de Trayectoria Balística Paramétrica� �
1 extends Node3D

2

3 # Parametros de lanzamiento (Vector3)

4 # v_y debe ser positiva para que suba.

5 # v_z o v_x dan el desplazamiento horizontal.

6 export var velocidad_inicial: Vector3 = Vector3(0, 15, 10)

7 export var gravedad: float = 9.8

8

9 # Variables de estado

10 var tiempo_vuelo: float = 0.0

11 var posicion_inicial: Vector3

12 var vector_gravedad: Vector3

13

14 # Referencia al objeto visual

15 onready var bala = $Bala

16

17 func _ready ():

18 # Guardamos la posicion original para reiniciar el ciclo

Informática Gráfica Ismael Sallami Moreno

1.10 Sesión 11 155

19 if bala:

20 posicion_inicial = bala.global_position

21 else:

22 posicion_inicial = Vector3.ZERO

23

24 # Pre-calculamos el vector de aceleracion

25 vector_gravedad = Vector3(0, -gravedad , 0)

26

27 # Configuracion visual opcional (crear bala si no existe)

28 if not bala:

29 crear_bala_procedimental ()

30

31 func crear_bala_procedimental ():

32 var mesh = CSGSphere3D.new()

33 mesh.radius = 0.5

34 mesh.name = ''Bala''

35 add_child(mesh)

36 bala = mesh

37 mesh.global_position = posicion_inicial

38

39 # Material rojo para visibilidad

40 var mat = StandardMaterial3D.new()

41 mat.albedo_color = Color(1, 0, 0)

42 mesh.material = mat

43

44 func _process(delta):

45 # 1. Acumular el tiempo real transcurrido

46 tiempo_vuelo += delta

47

48 # 2. Calcular la posicion usando la formula parametrica

exacta:

49 # p(t) = p0 + v0*t + 0.5 * a * t^2

50 var desplazamiento_vel = velocidad_inicial * tiempo_vuelo

51 var desplazamiento_acel = 0.5 * vector_gravedad * pow(

tiempo_vuelo , 2)

52

53 var nueva_posicion = posicion_inicial + desplazamiento_vel +

desplazamiento_acel

54

55 # 3. Aplicar al objeto

56 if bala:

57 bala.global_position = nueva_posicion

58

59 # 4. Logica de reinicio (Loop)

60 # Si la bala cae por debajo de la altura inicial y ha pasado

algo de tiempo

61 if nueva_posicion.y < posicion_inicial.y and tiempo_vuelo >

0.1:

Informática Gráfica Ismael Sallami Moreno

1.10 Sesión 11 156

62 reiniciar_animacion ()

63

64 func reiniciar_animacion ():

65 tiempo_vuelo = 0.0

66 if bala:

67 bala.global_position = posicion_inicial

68

69 # Opcional: Imprimir duracion teorica vs real

70 # T_teorico = 2 * Vy / g

71 # var t_teorico = (2.0 * velocidad_inicial.y) / gravedad

72 # print(''Ciclo completado. T esperado: '', t_teorico)� �

4. Análisis del Código

– Cálculo Vectorial: Se aprovecha la capacidad de Godot para operar con vectores comple-
tos (Vector3). La línea velocidad_inicial * tiempo_vuelo escala todas las componentes
simultáneamente.

– Gravedad: Se aplica como un vector constante hacia abajo (0,−9,8, 0). El término cuadrático
(t2) es lo que genera la forma parabólica característica: el movimiento horizontal es lineal
(velocidad constante), mientras que el vertical se frena y luego acelera hacia abajo.

– Reinicio: La condición nueva_posicion.y < posicion_inicial.y detecta cuándo el proyectil
ha completado el arco y cruza el plano del suelo, momento en el que se resetea el tiempo
t = 0 para repetir la animación en bucle.

Informática Gráfica Ismael Sallami Moreno

Bibliografía

[1] Ismael Sallami Moreno, Estudiante del Doble Grado en Ingeniería Informática +
ADE, Universidad de Granada.

157

	I Teoría
	Ejercicios Teóricos
	Sesión 2
	Sesión 3
	Sesión 4
	Sesión 5
	Sesión 6
	Sesión 7
	Sesión 8
	Sesión 9
	Sesión 10
	Sesión 11

