1%; UNIVERSIDAD
s DEGRANADA

Informatica Grafica

Ejercicio Resueltos

https://elblogdeismael.github.io

Licencia

Este trabajo esta bajo una Licencia
Creative Commons BY-NC-ND 4.0.

Permisos: Se permite compartir, copiar
y redistribuir el material en cualquier
medio o formato.

Condiciones: Es necesario dar crédito
adecuado, proporcionar un enlace a la
licencia e indicar si se han realizado
cambios. No se permite usar el material
con fines comerciales ni distribuir
material modificado.

o0ee

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

Informatica Grafica

[smael Sallami Moreno

Indice general

I Teoria 7
1 Ejercicios Teéricos 15
1.1 Sesidn 2 L e 15
1.2 Sesidn 3 36
1.3 Sesidn 4 L 51
1.4 Sesidn 5 65
1.5 Sesidn 6 80
1.6 Sesidn 7 101
1.7 Sesidn 8 107
1.8 Sesidn 9 120
1.9 Sesidn 10 L e 130
1.10 Sesion 11 e e 140

INDICE GENERAL 6

Informatica Grafica Ismael Sallami Moreno

Parte 1

Teoria

Nota: Se adjunta un indice para buscar mas facil el contenido.

I. Matematicas y Demostraciones Vectoriales

Fundamentos tedricos sobre operaciones con vectores, matrices y transformaciones.

II.

1.2.1 Producto Escalar (Dot Product)
Demostracion del calculo mediante suma de componentes en base ortonormal.

1.2.2 Producto Vectorial (Cross Product)
Demostracién del calculo utilizando coordenadas cartesianas.

1.2.3 Ortogonalidad
Demostracién de que el producto vectorial es perpendicular a los vectores originales.

1.2.4 Invariancia Rotacional 2D
Prueba de que el producto escalar se mantiene constante tras aplicar una rotacién.

1.2.5 Isometria (Conservacién de Norma)
Demostracion de que la rotacion no altera la longitud del vector.

1.2.6 Rotacién de 90 Grados
Demostracién de perpendicularidad: ¢ - R(¢) = 0.

1.2.7 Matrices Ortonormales
Analisis de la matriz de rotacién 2D: filas y columnas unitarias y ortogonales.

1.2.8 No Conmutatividad (Escalado)
Prueba de que R-S # S - R si el escalado no es uniforme.

1.2.9 No Conmutatividad (Traslacién)
Prueba de que el orden importa entre rotaciéon y traslacion.

1.2.10 Invariancia en 3D
El producto escalar es invariante bajo rotaciones en ejes cartesianos.

1.2.11 Rotacién del Producto Cruz
Demostracién de la propiedad distributiva de la rotacién sobre el producto vectorial.

Implementacién en GDScript (Godot)

Scripts para generacion de geometria, jerarquias de escena y logica de control.

Informatica Grafica Ismael Sallami Moreno

10

A.

Geometria Procedural y Mallas

1.1.1 Poligono Regular Relleno
Creacion de una malla de N lados mediante MeshInstance2D.

1.1.2 Gradientes de Color
Uso de Vertexr Colors para interpolacién de colores en la malla.

1.1.4 Visualizacién de Aristas (Wireframe)
Diferencias de implementacién entre mallas indexadas y no indexadas.

1.1.5 Debug de Normales
Script global (autoload) para generar lineas que visualicen las normales de una malla.

1.2.12 Funcién Gancho
Generacion de una polilinea simple mediante cédigo.

1.4.1 Figuras Compuestas
Script para generar un cuadrado azul con un triangulo inscrito y bordes diferenciados.

1.4.3 Triangulacién Manual (Tronco)

Generacién de un poligono céncavo mediante descomposicién en tridngulos.

1.4.5 Modelado por Cédigo (Logo Android)
Construccion 3D usando primitivas cilindricas y semiesféricas.

B. Escena, Jerarquias y Animacion

1.2.13 Instanciacién y Pivotes
Rotaciones complejas alrededor de un punto de pivote desplazado.

1.4.2 Transformaciones Jerarquicas
Uso de nodos padre/hijo con escalado negativo (efecto espejo).

1.4.4 Arbol Fractal Recursivo

Script recursivo para generar ramas transformadas geométricamente.

1.8.1 Gestién de Input
Légica para detectar la duracién exacta de la pulsacién de una tecla.

1.10.1 Curvas de Hermite
Interpolacién suave de movimiento pasando por puntos de control con tangentes.

1.10.2 Oscilacion Controlada
Movimiento periédico con velocidad constante y rebote exacto en extremos.

1.10.3 Reloj Analégico
Rotacién de agujas sincronizada con el tiempo del sistema (Time).

1.10.4 Simulacién de Péndulo

Animacién basada en funciones arménicas (sin/cos) para oscilacién fisica.

1.10.5 Tiro Parabdlico
Animacién fisica basada en la ecuacién p = pg + vot + 0,5at>.

Informatica Grafica Ismael Sallami Moreno

11

ITI. Algoritmos y Pseudocédigo (Ray Tracing)

Diserio ldgico para cdlculo de intersecciones y seleccion (Picking).

1.8.2 Intersecciéon Rayo-Triangulo
Algoritmo completo: Interseccién con plano + Coordenadas Baricéntricas.

— 1.8.3 Picking (Unproject)
Célculo del rayo 3D en coordenadas de mundo a partir de un click en pantalla 2D.

— 1.9.1 Intersecciéon Rayo-Disco
Légica de interseccién plano-rayo y verificacién de distancia al centro (radio).

— 1.9.2 Interseccion Rayo-Esfera
Resolucién mediante ecuacion cuadratica para esferas unitarias y genéricas.

- 1.9.3 Interseccién Rayo-Cilindro/Cono
Algoritmos para cuadricas infinitas con clipping por altura finita.

1.3.5 Extraccién de Aristas

Algoritmo para generar una tabla de aristas tnicas desde una lista de tridngulos.

~ 1.3.6 Calculo de Area
Algoritmo para sumar las dreas de los tridngulos de una malla (producto cruz).

IV. Teoria de Mallas y Texturas

Eficiencia espacial, topologia y mapeo de coordenadas UV.

— 1.3.1 Eficiencia de Memoria
Comparativa: Enumeracién Espacial (Véxeles O(k?)) vs Malla Indexada (O(k?)).

1.3.2 Rejilla Rectangular
Célculo de memoria requerida para una topologia de rejilla M x N.

1.3.3 Triangle Strips
Anaélisis coste-beneficio: Ahorro de memoria vs coste de Vertex Shader.

— 1.3.4 Topologia (Euler-Poincaré)
Demostracién de relaciones en mallas cerradas: Na = 3(Ny — 2).

— 1.7.1 Mapeo UV (Dado)
Disefio de tabla de vértices minima (14 vértices) para textura continua.

— 1.7.2 Normales y Costuras (Hard Edges)
Justificacion de duplicado de vértices (24) para iluminacién en cubo.

Informatica Grafica Ismael Sallami Moreno

12

— 1.7.3 Textura Repetida (Tiling)

Tabla de coordenadas UV para repetir una imagen en todas las caras.

V. Camara, Proyeccion e Iluminacion

Matemdticas de la cdmara virtual y modelos de reflexion de luz.

A. Configuracion de Cdamara

— 1.5.1 Camara de Seguimiento

Script para posicionar la cimara detras y arriba de un objetivo mévil.

— 1.5.2 LookAt (Ejes Alineados)

Célculo de vectores a, u,n para una configuracién ortogonal especifica.

— 1.5.3 LookAt (Con Rotacién)

Calculo de vectores de camara incluyendo rotacién sobre el eje de vista (Roll).

— 1.5.4 Base de la Camara

Cédigo para derivar la base ortonormal (u,v,n) desde pardmetros de vista.

— 1.5.5 Matriz de Vista

Construccién manual de la Transform3D (inversa de la cdmara).

— 1.5.6 Control de Aspect Ratio

(e}

Script para mantener el FOV fijo (752) independientemente del tamaiio de ventana.

B. Proyeccion y Frustum
— 1.5.7 Frustum Ajustado (Cubo)

Calculo de planos (n, f,1,r,t,b) para encuadrar perfectamente un cubo.

— 1.5.8 Frustum Ajustado (Esfera)
Ajuste de planos de proyeccion para encuadrar una esfera tangente.

— 1.5.9 Frustum No Cuadrado

Adaptacién de la proyeccién para relaciones de aspecto Landscape y Portrait.

— 1.5.10 Posicionamiento por FOV
Célculo de la distancia de la cdmara dado un dngulo de apertura f.

C. Modelos de Iluminacion
— 1.6.1 Especularidad

Implementacién de las formulas de Phong y Blinn-Phong en GDScript.

— 1.6.2 Puntos de Brillo Maximo

Célculo teérico de la posicién del brillo en una esfera (Lambert/Phong).

Informatica Grafica

Ismael Sallami Moreno

13

- 1.6.3 BRDF GGX (Microfacetas)
Implementacién completa: Fresnel Schlick + Geometria + Distribucién Normal.

Informatica Grafica Ismael Sallami Moreno

14

Informaética Grafica Ismael Sallami Moreno

Capitulo 1

Ejercicios Tedricos

Observacion. Estos ejercicios usan una numeracién distinta a la de las diapositivas, aunque estan
en el mismo orden. Hay veces que cuandos se hace referencia a un ejercicio se usa la enumeracién
de las diapositivas para encontrarlo méas facilmente. De la misma manera se recomienda revisar el
orden de deficién de vértices y demads para tridngulos por si es el correcto.

1.1 Sesion 2

Para la resolucion de los siguientes ejercicios se ha usado varios scripts como autoload:

Script de Godot para asignar a un nodo de tipo 'Node2D'
de forma que se visualizan los ejes, con fondo blanco, 1la
vista 2D es controlable con el ratédn.

[\v)
H OHF ¥ =

Fija la vista para que inicialmente la regidn visible incluya
a

5 # un cuadrado de lado 2 y centro en el origen ([-1,-1]

[+1,+1])

7 extends Node2D

10 # tamanos del viewport guardados

12 var viewport_tamano_dcc_int : Vector2i = Vector2i(0, 0) #
tamano actual del area de dibujo en pixels (dcc)

135 var viewport_tamano_dcc : Vector2 = Vector2(o0, 0)

14

15 var vp : Viewport = null

16

17 [e e e e e Ll L

15 # Definicidn de la vista (transf. de vista, desde WCC a DC)

20 const ejeX := Vector2(1.0, 0.0)

21 const ejeY := Vector2(0.0, 1.0)

22

23 var tp : float = 1.0 # tamano (== alto, ancho) de un pixel en
coords de mundo (WCC)

24 var cvp : Vector2 = Vector2(@, @) # centro del viewport en

coordenadas de mundo (WCC)

15

1.1 SESION 2

16

25 var fev : float

= 1.0 # factor de escalado de la vista, se

controla con la rueda del ratoén

28/ # Estado de arrastre del ratédn

350 var raton_izq_pulsado : bool = false

33 # Actualiza la transformacidén de vista en funcidén del tamafio del

area de dibujo

35, var ¢ : int = 0

37 func _actualiza_

39 tp = 2.0/(fevxmin(vp.size.x,

transf_vista() -> void

10 var t1 := Transform2D(ejeX, ejeY, -cvp)
11 var t2 := Transform2D(ejeX/tp, -ejeY/tp,
12 transform = t2xt1

5 # Procesar evento de entrada.

vp.size.y))

cvp+0.5%xvp.size)

46/ # Se usa por ahora Unicamente para controlar la vista 2d con el

raton

s func _unhandled_

input(event : InputEvent):

50 var actualizada : bool = false

52 if event is InputEventMouseButton:

53 if event.button_index == MOUSE_BUTTON_LEFT:

54 raton_izq_pulsado = event.pressed

56 if event.button_index == MOUSE_BUTTON_WHEEL_UP:
57 fev %= 1.05

58 actualizada = true

60 if event.button_index

61 fev /= 1.05
62 actualizada = true

64 elif event is
65 cvp += tp *

MOUSE_BUTTON_WHEEL _DOWN :

InputEventMouseMotion and raton_izq_pulsado:

Vector2(-event.relative.x,

+event.relative.y)

66 actualizada = true

67

68 elif event is InputEventKey:

69 if event.keycode == KEY_ESCAPE and event.is_released():

Informatica Grafica

Ismael Sallami Moreno

1.1 SESION 2 17
70 get_tree().quit ()
71
72 if actualizada:
73 _actualiza_transf_vista()
74
76 # crear objetos para los ejes y afiadirlos como hijos
7s func _crear_ejes_2d ()
79
80 const w2 : float = 0.01 # mitad del ancho de la barra (en X)
81 const f : float = 2.5 # ancho de la flecha en X relativo al
ancho de la barra
82 const 1 : float = 0.9 # longitud de la flecha en Y (entre 0
y 1), resto hasta 1 es el triangulo.
83
84 # crear tablas para una barra (indexado) y un triangulo
85 var t_barra : Array = [] ; t_barra.resize(Mesh.ARRAY_MAX)
86 t_barra[Mesh.ARRAY_VERTEX 1 = PackedVector2Array ([
87 Vector2(-w2,-w2/2.0), Vector2(w2,-w2/2.0), Vector2(-w2,1),
Vector2(w2,1)
88 1
89 t_barral[Mesh.ARRAY_INDEX] = PackedInt32Array([©0,1,2, 2,1,3
iD)
90
91 var t_tri : Array = [] ; t_tri.resize(Mesh.ARRAY_MAX)
92 t_tri[Mesh.ARRAY_VERTEX] = PackedVector2Array ([
93 Vector2(-w2*xf,1), Vector2(w2xf,1), Vector2(0,1)
94 1D
95
96 # crear un arrayMesh y afadir las dos surfaces
97 var am := ArrayMesh.new()
98 am.add_surface_from_arrays(Mesh.PRIMITIVE_TRIANGLES, t_barra
)
99 am.add_surface_from_arrays(Mesh.PRIMITIVE_TRIANGLES, t_tri)
100
101 # crear mesh instances, para ej X (rojo) y para eje Y (verde)
102 var ex := MeshInstance2D.new(); ex.mesh = am; ex.rotate(-PI
/2.0)
103 var ey := MeshInstance2D.new(); ey.mesh = am
104 ex.modulate = Color(1,0,0)
105 ey.modulate = Color(o,1,0)
106
107 # crear lineas en el eje X y en el Y
108 var lex := Line2D.new()
109 lex.points = PackedVector2Array ([Vector2(-1000,0), Vector?
(1000,0) 1)

110

lex.width = w2%x0.75

Informatica Grafica

Ismael Sallami Moreno

1.1 SESION 2 18

111 lex.default_color = Color(1,0,0)
112 lex.antialiased = true

114 var ley := Line2D.new()

115 ley.points = PackedVector2Array ([Vector2(0,-1000), Vector?
(0,1000) 1)

116 ley.width = w2%0.75

117 ley.default_color = Color(e,1,0)

118 ley.antialiased = true

120 # afiadir eje X e Y a un nuevo nodo 2D

121 var ejes := Node2D.new()

122 ejes.add_child(ex) ; ejes.add_child(lex)

123 ejes.add_child(ey) ; ejes.add_child(ley)

124 ejes.z_index = RenderingServer.CANVAS_ITEM_Z_MIN # ponerlo
detras de todo

126 # poner ejes como hijo de este:

127 add_child(ejes)

130 # inicializacidn

132 func _ready () -> void:

134 _crear_ejes_2d()

135 RenderingServer.set_default_clear_color(Color(1.0, 1.0, 1.0
))

137 # actualizar el viewport ('vp') y la vista.

138 vp = get_viewport() ; assert(vp is Viewport)

139 _actualiza_transf_vista()
140 vp.connect("size_changed”, _actualiza_transf_vista)

1 extends Node

5 func genSegNormales(verts, norms : PackedVector3Array, 1lon
float, color : Color) -> MeshInstance3D:
var line_verts = PackedVector3Array()
5 var line_colors = PackedColorArray()

7 for i in range(verts.size()):
8 var origen = verts[il]
9 var destino = origen + norms[i] * lon

11 line_verts.push_back(origen)

Informatica Grafica Ismael Sallami Moreno

1.1

SESION 2 19

50

1

)

line_verts.push_back(destino)

line_colors.push_back(color)
line_colors.push_back(color)

var arrays = []
arrays.resize(Mesh.ARRAY_MAX)
arrays[Mesh.ARRAY_VERTEX] = line_verts
arrays[Mesh.ARRAY_COLOR] = line_colors

var arr_mesh = ArrayMesh.new()
arr_mesh.add_surface_from_arrays(Mesh.PRIMITIVE_LINES, arrays)

var material = StandardMaterial3D.new()
material.shading_mode = BaseMaterial3D.SHADING_MODE_UNSHADED
material.vertex_color_use_as_albedo = true

var mi = MeshInstance3D.new()
mi.mesh = arr_mesh

mi.material_override = material

return mi

func gancho() -> ArrayMesh:

var vertices = PackedVector2Array ([
Vector2(0,0),
Vector2(1,0),
Vector2(1,1),
Vector2(0,1),
Vector2(o,2)

D

var arrays = []
arrays.resize(Mesh.ARRAY_MAX)
arrays[Mesh.ARRAY_VERTEX] = vertices

var mesh = ArrayMesh.new()
mesh.add_surface_from_arrays(Mesh.PRIMITIVE_LINE_STRIP, arrays
)

return mesh

extends Node

y
3 # Transformacidén identidad auxiliar para facilitar la lectura
del cddigo
i var tr_identidad := Transform2D ()

Informatica Grafica Ismael Sallami Moreno

1.1

SESION 2 20

ot

6

38

39

40

41

50

#

Variables para almacenar las mallas generadas

var cuadrado: ArrayMesh

var triangulo: ArrayMesh

var casa: ArrayMesh

var circunferencia: ArrayMesh

%

#

7| #

FUNCION: _inicializar_meshes

Propésito: Construye las geometrias basicas (primitivas) que
se reutilizaran.

Se ejecuta una sola vez al inicio para optimizar memoria.

func _inicializar_meshes():

Definicidon del Cuadrado (Unitario)

cuadrado = CrearArrayMesh(PackedVector2Array ([
Vector2(0.0, 0.0), Vector2(1.0, 0.0),
Vector2(1.0, 1.0), Vector2(0.0, 1.0),
Vector2(0.0, 0.0)

1)

Definicidon del Triangulo

triangulo = CrearArrayMesh(PackedVector2Array ([
Vector2(0.0, 0.0), Vector2(1.0, ©0.0), Vector2(0.0, 1.0),
Vector2(0.0, 0.0)

1)

Definicion de la Casa (Poligono irregular)

casa = CrearArrayMesh (PackedVector2Array ([
Vector2(0.0, 0.0), Vector2(1.0, 0.0),
Vector2(1.0, 1.0), Vector2(0.5, 1.4), Vector2(0.0, 1.0),
Vector2(0.0, 0.0)

1)

Definicion de la Circunferencia (64 segmentos)
circunferencia = CrearCircunferencia(64)

FUNCIONES AUXILIARES: GENERACION DE GEOMETRIA

Funcidén: CrearArrayMesh

Descripcion: Crea un objeto ArrayMesh a partir de un array de
vectores.

Usa la primitiva PRIMITIVE_LINE_STRIP (polilinea abierta).

Informatica Grafica Ismael Sallami Moreno

1.1 SESION 2 21

51 # Parametros: v (PackedVector2Array) - Lista de vértices.
52/ # Retorno: ArrayMesh configurado.

54 func CrearArrayMesh(v: PackedVector2Array) -> ArrayMesh:

55 var tablas: Array = []

56 tablas.resize(Mesh.ARRAY_MAX)

57 tablas[Mesh.ARRAY_VERTEX] = v

58 var am: ArrayMesh = ArrayMesh.new()

59 am.add_surface_from_arrays(Mesh.PRIMITIVE_LINE_STRIP, tablas)

60 return am

61

62 i EeSs=Ss===ssssss=ss=s=s==5=2

63 # Funcidén: CrearCircunferencia

64 # Descripcidn: Genera una malla circular aproximada por
segmentos de linea.

65 # Parametros: n (int) - Numero de segmentos (resolucidn).

66/ # Retorno: ArrayMesh con la forma de la circunferencia.

6s func CrearCircunferencia(n: int) -> ArrayMesh:

69 var v := PackedVector2Array()

70 for i in range(n + 1):

71 var a: float = (float(i) * 2.0 x PI) / float(n)
72 v.append(Vector2(cos(a), sin(a)))

73 return CrearArrayMesh(v)

77 # FUNCIONES AUXILIARES: INSTANCIACION Y TRANSFORMACION DE NODOS

s1 # Funcion: CrearMeshInstance2D

s2 # Descripciodn: Crea un nodo visual (MeshInstance2D) asignandole
una malla y una

g3 # transformacidn inicial. Asigna un color azul por defecto (
modulate).

sa # Parametros:

85| # - am: La malla (ArrayMesh) a visualizar.

s6| # - tr: La transformacion (Transform2D) a aplicar.

87/ # Retorno: MeshInstance2D listo para anadir al éarbol.

88 # B e

s9 func CrearMeshInstance2D(am: ArrayMesh, tr: Transform2D) ->
MeshInstance2D:

90 var mi := MeshInstance2D.new()

91 mi.transform = tr

92 mi.modulate = Color(e.0, 0.0, 0.7) ## Azul estandar
93 mi.mesh = am
94 return mi

Informaética Grafica Ismael Sallami Moreno

1.1

SESION 2

22

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

116

117

118

119

120

121

122

128

129

130

131

132

133

134

135

Funcidn: TransformaNode2D
Descripcion: Aplica una transformacion adicional a un nodo
existente.
Realiza una composicidon por la izquierda (tr * n.transform).
Parametros:

- tr: La matriz de transformacidén a aplicar.

['

#
1t
- n: El nodo a transformar.
#
Retorno: El mismo nodo 'n' modificado.

func TransformaNode2D(n: Node2D, tr: Transform2D) -> Node2D:
n.transform = tr * n.transform

E

return n

CONSTRUCCION DEL MODELO JERARQUICO (ARBOL 2D)
Funciones que construyen las partes compuestas del objeto

n

Casa".

Componente: Pomo
Descripcidn: Crea el pomo de la puerta usando la
circunferencia escalada y trasladada.

func Pomo() -> Node2D:
var tra = Transform2D().translated(Vector2(e.1, 0.5))
var esc = Transform2D().scaled(Vector2(0.06, 0.06))
return CrearMeshInstance2D(circunferencia, tra * esc)

5 # Componente: HojaDer (Hoja Derecha)
Descripcion: Crea una hoja de puerta compuesta por un cuadrado

y un pomo.

func HojaDer () -> Node2D:

var tra = Transform2D().translated(Vector2(0.5, 0.0))
var esc = Transform2D().scaled(Vector2(0.5, 1.0))
var n = Node2D.new()

Afade el pomo transformado
n.add_child(TransformaNode2D (Pomo (), tra))

Anade la base de la hoja (cuadrado transformado)
n.add_child(CrearMeshInstance2D (cuadrado, tra * esc))
return n

Informaética Grafica

Ismael Sallami Moreno

1.1 SESION 2 23

130 # Componente: Puerta

140 # Descripciodn: Crea una puerta doble compuesta por una hoja
normal y otra reflejada.

141 # — == == === === ss == s === ===

112 func Puerta() -> Node2D:

143 var tra = Transform2D().translated(Vector2(1.0, 0.0))

144 var esc = Transform2D().scaled(Vector2(-1.0, 1.0)) # Escalado
negativo para reflejar

145 var n = Node2D.new()

146 n.add_child(HojaDer ()) # Hoja derecha original

147 n.add_child(TransformaNode2D (HojaDer (), tra x esc)) # Hoja
izquierda (reflejada)

148 return n

149

150 #f ==l======================I===

151 # Componente: Marcolzq (Marco Izquierdo)

152 # Descripcion: Parte decorativa de la ventana, compuesta por un
cuadrado y un triangulo.

153 # e

154 func MarcolIzq() -> Node2D:

155 var tra = Transform2D().translated(Vector2(0.0, 1.0))

156 var esc = Transform2D().scaled(Vector2(0.9, -0.8))

157 var n = Node2D.new()

158 n.add_child(CrearMeshInstance2D (cuadrado, tr_identidad))

159 n.add_child(CrearMeshInstance2D(triangulo, tra * esc))

160 return n

161

162 # S e S SRS IS S e e

163 # Componente: Marcos

164 # Descripcidn: Conjunto de marcos para la ventana (izquierdo y
derecho reflejado).

165 # e e e e e e e e

166 func Marcos () -> Node2D:

167 var escl = Transform2D().scaled(Vector2(0.8, 1.0))

168 var tra = Transform2D().translated(Vector2(2.4, 0.0))

169 var esc2 = Transform2D().scaled(Vector2(-1.0, 1.0))

170 var n = Node2D.new()

171 n.add_child(TransformaNode2D (MarcolIzq (), escl))

179

180

n.add_child(TransformaNode2D (MarcolIzq(), escl * tra * esc2))
return n

Componente: Ventana
Descripcion: Crea una ventana completa con fondo (cuadrado) vy
marcos interiores.

func Ventana() -> Node2D:
var tra = Transform2D().translated(Vector2(0.1, 0.1))

Informatica Grafica Ismael Sallami Moreno

1.1 SESION 2

24

181 var esc =

Transform2D () .scaled(Vector2(0.4, 0.8))

182 var n = Node2D.new()
183 n.add_child(CrearMeshInstance2D (cuadrado, tr_identidad))
184 n.add_child(TransformaNode2D (Marcos(), tra * esc))

185 return n

186

187 # ===========================
1ss # Componente: InstPuerta (Instancia de Puerta)

189 # Descripcidn: Instancia la puerta completa en su posicion final

relativa a la fachada.
190 # e s —
191 func InstPuerta() -> Node2D:

192 var tra =
193 var esc =

Transform2D().translated(Vector2(0.56, 0.0))
Transform2D () .scaled(Vector2(0.3, 0.43))

194 var n = Node2D.new()
195 n.add_child(TransformaNode2D (Puerta(), tra x esc))

196 return n

197

198 # el —
199 # Componente: InstVentana (Instancia de Ventana)

200 # Descripcidn: Prepara una instancia de ventana con una escala

base.

201 # e e e
202 func InstVentana() -> Node2D:

203 var esc =

Transform2D () .scaled(Vector2(0.3, 0.3))

204 var n = Node2D.new()

205 n.add_child(TransformaNode2D (Ventana (), esc))
206 return n

207

208 # ===========================

200 # Componente Principal: Fachada

210 # Descripcidn: Raiz del modelo jerarquico. Ensambla 1la

estructura de la casa,

211 # la puerta y mUltiples instancias de ventanas en posiciones

especificas.
212 # ===========================
213 func Fachada () -> Node2D:
214 # Definicidn de transformaciones para posicionar elementos

215 var tral
216 var tra2
217 var tras3

Transform2D().translated(Vector2(e0.13, 0.13))
Transform2D () .translated(Vector2(0.00, 0.43))
Transform2D () .translated(Vector2(0.43, 0.00))

219 var n = Node2D.new()

221 # 1. Estructura base de la casa
222 n.add_child(CrearMeshInstance2D(casa, tr_identidad))

224 # 2. Puerta principal

Informatica Grafica

Ismael Sallami Moreno

1.1 SESION 2 25

225 n.add_child(TransformaNode2D (InstPuerta(), tr_identidad))

226

227 # 3. Ventana inferior izquierda

228 n.add_child(TransformaNode2D(InstVentana (), tral))

229

230 # 4. Ventana superior izquierda (tral + tra2)

231 n.add_child(TransformaNode2D(InstVentana (), tral * tra2))

232

233 # 5. Ventana superior derecha (tral + tra2 + tra3)

234 n.add_child(TransformaNode2D(InstVentana(), tral * tra2 * tra3
))

235

236 return n

237

238

239 # B e

240 # FUNCIONES EXTRA PARA EJERCICIOS ESPECIFICOS

241| # ============-=S===S=S===S=======

242

243 # =============S==S============

244 # Helper Local para Rellenos (PRIMITIVE_TRIANGLES)

245 # Necesario porque 'funcionesauxiliarest5.CrearArrayMesh' usa
LINE_STRIP.

246 # ===========================

248 func _crear_malla_rellena(v: PackedVector2Array) -> ArrayMesh:

260 #

var tablas: Array = []

tablas.resize(Mesh.ARRAY_MAX)

tablas[Mesh.ARRAY_VERTEX] = v

var am: ArrayMesh = ArrayMesh.new()

Aqui usamos TRIANGLES en lugar de LINE_STRIP
am.add_surface_from_arrays(Mesh.PRIMITIVE_TRIANGLES, tablas)
return am

Helper Local para Lineas por pares (PRIMITIVE_LINES)
Necesario para dibujar lineas discontinuas o saltando vértices

261 func _crear_malla_lineas_pares(v: PackedVector2Array) ->

ArrayMesh:
var tablas: Array = []
tablas.resize (Mesh.ARRAY_MAX)
tablas[Mesh.ARRAY_VERTEX] = v
var am: ArrayMesh = ArrayMesh.new()
Usamos LINES en lugar de LINE_STRIP
am. add_surface_from_arrays(Mesh.PRIMITIVE_LINES, tablas)
return am

Informatica Grafica

Ismael Sallami Moreno

1.1 SESION 2 26

Puede ser que se usasen de otros ficheros, pero estos son los principales. De todas formas, si no se
incluye la implementacion de algiin método se sobreentiende.

Ejercicio 1.1.1

Poligono regular relleno de color plano
Implementa un nodo de tipo MeshInstance2D con una malla (no indexada) para un poligono
regular de n lados relleno de color naranja plano (RGB(1.0, 0.7, 0.0)), con radio r y centro en
el origen.
El poligono estara formado por n triangulos, cada uno con un vértice en el centro y los otros
dos en el contorno.
Los valores de n y r se declaran como dos constantes de GDScript (const), como se indica a
continuacion:

const n: int = 8

const r: float = 0.8

Los valores de estas constantes se podran cambiar sin tocar nada del resto del script.

P
v

Solucion 1.1.1. Solucién al problema 2.1:

#
#
#
#
#
#
#
s #
#
#
#
#
#
#

16 extends MeshInstance2D # <-- IMPORTANTE

Problema 2.1:

Implementa un nodo de tipo MeshInstance con

una malla (no indexada) para un poligono regular

de n lados relleno de color naranja plano (RGB

(1.0, 0.7, 0.0)), con radio r y centro en el origen (ver
figura).

El poligono estara formado por n triangulos, cada uno
con un vértice en el centro y los otros dos en el
contorno. Los valores de n y r de declaran como dos
constantes de GDScript (const), como se indica aqui:
const n : int = 8

const r : float = 0.8

Los valores de estas constantes se podran cambiar sin
tocar nada del resto del script.

15 const n: int = 8
19 const r: float = 0.8

21 func _ready():

Informaética Grafica Ismael Sallami Moreno

1.1 SESION 2

27

22 var vertices = PackedVector2Array ()

24 var center = Vector2(0, 0)

26 var angle_step = TAU / n

28 for i in range(n):

29 var anglel = i * angle_step

30 var angle2 = (i + 1) * angle_step

31

32 var pl = Vector2(r * cos(anglel), r * sin(anglel))
33 var p2 = Vector2(r * cos(angle2), r * sin(angle2))
34

35 vertices.push_back(center)

36 vertices.push_back(p1)

37 vertices.push_back(p2)
39 var tablas = []

41 tablas.resize(Mesh.ARRAY_MAX)
42 tablas[Mesh.ARRAY_VERTEX] = vertices

44 mesh = ArrayMesh.new()
45 mesh.add_surface_from_arrays(Mesh.PRIMITIVE_TRIANGLES, tablas)

a7 modulate = Color (1.0, 0.7, 0.0)

Ejercicio 1.1.2

Poligono regular relleno con gradaciones

Crea otro Node2D, y asignale un script para visualizar el mismo poligono regular que antes
(también con una malla no indexada), solo que ahora debes asignar colores a los vértices para
que los triangulos aparezcan con una graduacion en tonos de gris como en la figura.

Cada tridngulo que forma el poligono regular serd blanco en el vértice del centro, gris claro en
otro vértice del borde y gris oscuro en el tercero.

Responde razonadamente a esta cuestiéon: jcuantos vértices debe tener la tabla de vértices?

Gris Oscuro

Blanco Gris Claro

Solucion 1.1.2. Solucién al problema 2.2:

Informatica Grafica Ismael Sallami Moreno

1.1

SESION 2

28

38

39

40

41

HOHF OHF OH OH OHF OF OHF OH OH OH OHF OH

Problema 2.2:

Crea otro Node2D, y asignale un script para
visualizar el mismo poligono regular que antes
(también con una malla no indexada), solo que
ahora debes asignar colores a los vértices para
que los triangulos aparezcan con una gradua7
cion en tonos de gris como en la figura. Cada
triangulo que forma el poligono regular sera
blanco en el vértice del centro, gris claro en
otro y gris oscuro en el tercero.

Responde razonadamente a esta cuestiodn:

¢ cuantos vértices debe tener la tabla de vér7
tices ?

extends MeshInstance2D

const n: int = 8
const r: float = 0.8

func _ready():

1. Creamos arrays para vértices Y para colores
var vertices = PackedVector2Array()
var colors = PackedColorArray()

var center_pos = Vector2(o, 0)
var angle_step TAU / n

Definimos los colores segun pide el enunciado [cite: 2422]
var c_center = Color (1.0, 1.0, 1.0) # Blanco (Centro)

var c_light = Color(e.8, 0.8, ©0.8) # Gris Claro (Vértice 1)
var c_dark = Color(e.2, 0.2, 0.2) # Gris Oscuro (Vértice
2)

for i in range(n):

var anglel = i * angle_step

var angle? (i + 1) *x angle_step

Calculamos posiciones del borde

var pl Vector2(r * cos(anglel), r * sin(anglel))

var p2 = Vector2(r x cos(angle2), r * sin(angle2))

--- ANADIMOS VERTICES (Topologia Tridngulos) ---
vertices.push_back(center_pos)
vertices.push_back(p1)

vertices.push_back(p2)

--- ANADIMOS COLORES (En el mismo orden estricto) ---
colors.push_back(c_center)

Informaética Grafica

Ismael Sallami Moreno

1.1 SESION 2 29

51 # 2.

52 var

colors.push_back(c_light)
colors.push_back(c_dark)

Preparamos las tablas (SOA - Structure of Arrays)
tablas = []

53 tablas.resize(Mesh.ARRAY_MAX)
54 tablas[Mesh.ARRAY_VERTEX] = ver

56 # 3.

Generamos la malla

57 mesh = ArrayMesh.new()
58 mesh.add_surface_from_arrays (Mesh.PRIMITIVE_TRIANGLES,
tablas)

60 # NOTA: Ya no usamos 'modulate

porque los colores vienen

dentro de la malla.

Para ver cuantos vértices tiene la tabla de vértices, hay que tener en cuenta que cada triangulo

tiene 3 vértices, y como hay n triangulos, la tabla de vértices debe tener 3n vértices. Por lo tanto,

la respuesta es 3n. Siendon n = 8, la tabla de vértices tiene 24 vértices.

Ejercicio 1.1.3

Repite los dos problemas anteriores (2.1 y 2.2), con los mismos requerimientos, pero ahora
usando mallas indexadas, de forma que el nimero de vértices e indices sea minimo.
Responde razonadamente a estas cuestiones:

— ;Cuantos vértices debe tener ahora la tabla de vértices en cada caso?

— Y cuantos indices debe haber?

Solucion 1.1.3.

1 extends

2 const n:
3 const r:

Solucion al problema 2.3:

MeshInstance2D
int = 8
float = 0.8

1 const activate_2_1: bool = true

¢ func _ready():

7 if activate_2_1:

var vertices = PackedVector2Array ()
var indices = PackedInt32Array()

var center = Vector2(0, 0)
var angle_step = TAU / n

--- 1. GENERACION DE VERTICES (TABLA DE VERTICES) ---
Afadimos el centro (Indice @)

vertices.push_back(center)

Afladimos los puntos del perimetro (Indices 1 a n)

Informatica Grafica Ismael Sallami Moreno

1.1 SESION 2 30

19 for i in range(n):

20 var angle = i * angle_step

21 var p = Vector2(cos(angle), sin(angle)) * r
22 vertices.push_back(p)

24 # --- 2. GENERACION DE INDICES (TABLA DE TRIANGULOS) ---

25 # Conectamos los vértices ya existentes

26 for i in range(n):

27 # E1 centro siempre es el indice @

28 var idx_center = 0

29

30 # Vértice actual del perimetro (empiezan en el i
ndice 1)

31 var idx_current = i + 1

33 # Siguiente vértice. Usamos moédulo (%) para cerrar
el circulo
34 # (Si estamos en el Ultimo, el siguiente debe ser el
1)

35 var idx_next = (i + 1) % n + 1

37 # Definimos el triangulo

38 indices.push_back(idx_center)
39 indices.push_back(idx_current)
40 indices.push_back (idx_next)

42 # --- 3. CREACION DE LA MALLA ---

43 var tablas = []

14 tablas.resize(Mesh.ARRAY_MAX)

15 tablas[Mesh. ARRAY_VERTEX] = vertices

46 tablas[Mesh.ARRAY_INDEX] = indices # iAhora usamos i
ndices!

47

18 mesh = ArrayMesh.new()

19 mesh.add_surface_from_arrays(Mesh.PRIMITIVE_TRIANGLES,
tablas)

50

51 # Color plano para toda la malla

52 modulate = Color (1.0, 0.7, 0.0)

53 else:

54 var vertices = PackedVector2Array()

55 var colors = PackedColorArray()

56 var indices = PackedInt32Array()

58 var angle_step = TAU / n

60 # Colores definidos
61 var c_center = Color (1.0, 1.0, 1.0) # Blanco

Informatica Grafica Ismael Sallami Moreno

1.1 SESION 2 31

62 var c_light = Color (0.8, 0.8, 0.8) # Gris Claro (Inicio
arco)

63 var c_dark = Color(e.2, 0.2, 0.2) # Gris Oscuro (Fin
arco)

64

65 # --- 1. VERTICES Y COLORES ---

66

67 # Vértice 0: E1l Centro (Compartido por todos)

68 vertices.push_back(Vector2(0,0))

69 colors.push_back(c_center)

71 # Vértices del perimetro (No se pueden compartir entre
triangulos vecinos)

72 for i in range(n):

73 var anglel = i * angle_step

74 var angle?

(i + 1) * angle_step

76 var pl
77 var p2

Vector2(cos(anglel), sin(anglel)) * r
Vector2(cos(angle2), sin(angle2)) * r

79 # Para cada triangulo, afiadimos sus dos vértices del
borde especificos

80 vertices.push_back(pl) # Vértice 'Light' de este tri
angulo

81 colors.push_back(c_light)

82

83 vertices.push_back(p2) # Vértice 'Dark' de este tria
ngulo

84 colors.push_back(c_dark)

85

86 # --- 2. INDICES ---

87 for i in range(n):

88 # E1 centro siempre es 0

89 # Los vértices del perimetro estan agrupados de 2 en

2 a partir del indice 1
90 # Tridngulo @ usa indices: 1 vy
91 # Triangulo 1 usa indices: 3y 4..
92 var base_idx = 1 + (i * 2)
93
94 indices.push_back (0) # Centro
95 indices.push_back(base_idx) # Light
96 indices.push_back(base_idx + 1) # Dark
97
98 # === g, MWALLA ===
99 var tablas = []
100 tablas.resize(Mesh.ARRAY_MAX)
101 tablas[Mesh.ARRAY_VERTEX] = vertices
102 tablas[Mesh.ARRAY_COLOR] = colors

Informatica Grafica Ismael Sallami Moreno

1.1 SESION 2

32

103 tablas[Mesh.ARRAY_INDEX] = indices

104

105 mesh = ArrayMesh.new()

106 mesh.add_surface_from_arrays (Mesh.PRIMITIVE_TRIANGLES,
tablas)

Ejercicio 1.1.4

Aristas del poligono regular
Crea un nuevo nodo MeshInstance2D de forma que ahora veamos simplemente las aristas
del contorno del poligono regular descrito en los anteriores problemas. En la figura se ve el
resultado para n = 16 y el mismo radio.
Considera dos casos:

1) Usando una malla no indexada.

2) Usando una malla indexada.

Solucion 1.1.4. Solucién al problema 2.4:

| extends MeshInstance2D

N

3 # Problema 2.4:

4 # Crea un nuevo nodo MeshInstance2D de for7

5 # ma que ahora veamos simplemente las aristas

6 # del poligono regular descrito en los anteriores
7 # problemas. En la figura se ve para n a 16 y el
s # mismo radio.

9o # Considera dos casos:

10 # - Usando una malla no indexada.

11 # - Usando una malla indexadas.

12

13 var no_indexado: bool = false

14 const n: int = 16 # Actualizado a 16 como pide el enunciado

15 const r: float = 0.8
16 var centre: Vector2 = Vector2(0, 0)

15 func _ready():
19 if no_indexado:

Informatica Grafica Ismael Sallami Moreno

1.1 SESION 2 33

20 var vertices = PackedVector2Array()

21 var angle_step = TAU / n # TAU es 2*PI

23 # Generamos pares de vértices para cada linea

24 for i in range(n):

25 var angle_current = i x angle_step

26 var angle_next = (i + 1) * angle_step

28 # Calculamos los dos extremos del segmento actual

29 var pl = Vector2(cos(angle_current), sin(angle_current)) =*
r

30 var p2 = Vector2(cos(angle_next), sin(angle_next)) * r

31

32 # Anadimos ambos al array.

33 # Como NO es indexada, repetimos vértices geométricos.
34 vertices.push_back(centre)
35 vertices.push_back(p1)

37 vertices.push_back(p1)
38 vertices.push_back(p2)

11 # Preparamos la estructura SOA

42 var tablas = []

13 tablas.resize(Mesh.ARRAY_MAX)

44 tablas[Mesh.ARRAY_VERTEX] = vertices

16 mesh = ArrayMesh.new()
\7 # IMPORTANTE: Cambiamos el tipo de primitiva a LINEAS
18 mesh.add_surface_from_arrays(Mesh.PRIMITIVE_LINES, tablas)

50 # Color para las lineas (ej. Verde o Rojo)
51 modulate = Color (0.0, 1.0, 0.0)

52 else:

53 var vertices = PackedVector2Array()

54 var indices = PackedInt32Array()

55 var angle_step = TAU / n

57 # 1. TABLA DE VERTICES
58 # Primero afadimos el CENTRO (Indice 0)
59 vertices.push_back(centre)

61 # Luego los puntos del perimetro (Indices 1 a n)
62 for i in range(n):

63 var angle = i * angle_step

64 var p = Vector2(cos(angle), sin(angle)) * r

65 vertices.push_back(p)

66

Informatica Grafica Ismael Sallami Moreno

1.1

SESION 2 34

89

90

91

93

94

2. TABLA DE INDICES
for i in range(n):
E1 centro es el indice 0
var idx_center = @
Vértice actual del borde (offset +1 porque el 0 es el
centro)
var idx_current = i + 1
Siguiente vértice (con médulo para cerrar el circulo)
var idx_next = (i + 1) % n + 1

--- DEFINIMOS LAS LINEAS ---

Linea 1: Radio (Conecta Centro con Actual)
indices.push_back(idx_center)
indices.push_back(idx_current)

Linea 2: Borde (Conecta Actual con Siguiente)
indices.push_back(idx_current)
indices.push_back(idx_next)

3. CREACION DE LA MALLA

var tablas = []

tablas.resize(Mesh.ARRAY_MAX)

tablas[Mesh.ARRAY_VERTEX] = vertices
tablas[Mesh.ARRAY_INDEX] = indices # iAsignamos los indices!

mesh = ArrayMesh.new()
mesh.add_surface_from_arrays (Mesh.PRIMITIVE_LINES, tablas)

modulate = Color (1.0, 0.0, 0.0) # Rojo

Informatica Grafica Ismael Sallami Moreno

1.1 SESION 2 35

Ejercicio 1.1.5

Generacion de malla con segmentos de normales

Crea un script global (autoload) con una funcién que genere un objeto de tipo MeshInstance3D
con una malla no indexada que contenga los segmentos representando las normales de una
malla dada. La funcién tendra la siguiente declaracién:
func genSegNormales(

verts: PackedVector3Array,

norms: PackedVector3Array,

lon: float,

color: Color
) -> MeshInstance3D:

Donde verts es la tabla de vértices de la malla original, norms la tabla de normales, lon la
longitud de los segmentos y color el color de los segmentos. Usa el tipo de primitiva lineas
(PRIMITIVE_LINES), y asegurate de que a los segmentos no les afecta la iluminacién.
Continuacién (Uso): Una vez tengas la funcién disponible, tisala en la funcién _ready de
alguna malla (por ejemplo, el Donut o los cubos de la prictica), para aniadir al objeto un nodo
hijo con la malla de segmentos creada por la funciéon.

Puedes capturar el evento de pulsacion de la tecla IN del objeto para activar y desactivar la
visualizacién de las normales en ese objeto. Para ello, usa un valor légico y el atributo de
visibilidad de la malla de segmentos.

Esquema conceptual: Superficie y Normales

Solucion 1.1.5. Solucién al problema 2.5: Se encuentra en el fichero Global. gd del autoload, cargando
anteriormente. De todas formas, se anade aqui la funciéon para que se vea mas facilmente:

1 func genSegNormales(verts, norms : PackedVector3Array, lon
float, color : Color) -> MeshInstance3D:

2 var line_verts = PackedVector3Array()

3 var line_colors = PackedColorArray()

5 for i in range(verts.size()):
6 var origen = verts[i]
7 var destino = origen + norms[i] * lon

9 line_verts.push_back(origen)
10 line_verts.push_back(destino)

12 line_colors.push_back(color)
13 line_colors.push_back(color)

Informatica Grafica Ismael Sallami Moreno

1.2 SESION 3 36

15 var arrays = []

16 arrays.resize(Mesh.ARRAY_MAX)

17 arrays[Mesh.ARRAY_VERTEX] = line_verts

18 arrays[Mesh.ARRAY_COLOR] = line_colors

19

20 var arr_mesh = ArrayMesh.new()

21 arr_mesh.add_surface_from_arrays(Mesh.PRIMITIVE_LINES,
arrays)

23 var material = StandardMaterial3D.new()
24 material.shading_mode = BaseMaterial3D.SHADING_MODE_UNSHADED

25 material.vertex_color_use_as_albedo = true
26

27 var mi = MeshInstance3D.new()

28 mi.mesh = arr_mesh

29 mi.material_override = material

30

31 return mi

1.2 Sesion 3

Demuestra que efectivamente el producto escalar de dos vectores se puede calcular (usando

sus coordenadas en cualquier marco cartesiano) como la suma del producto componente a
componente. Usa las propiedades que definen dicho producto escalar.

Solucion 1.2.1. Hipotesis y Datos de Partida:

1) Definimos dos vectores @ y ¢ en un espacio vectorial V.
2) Trabajamos en un marco cartesiano, lo que implica una base ortonormal {é;}.
3) Las propiedades de esta base especial son:
— &;-é; =1 (son unitarios).
— é;-¢é; =0si1i#j (son perpendiculares).
4) Expresamos los vectores mediante sus coordenadas en esta base:

Demostracién Paso a Paso:

Informatica Grafica Ismael Sallami Moreno

37

1.2 SESION 3

1) Planteamiento del producto:
n n
u-0= (Zalél> . ijéj
i=1 j=1

2) Aplicacién de la Propiedad Distributiva:

n n
=D aib(éi &)
i=1 j=1
3) Aplicacién de la Propiedad Asociativa (Escalares): Los coeficientes a; y b; son reales,

asi que pueden factorizarse fuera del producto escalar.
4) Aplicacién de las Propiedades de la Base Ortonormal:

— Cuando i # j, el término es 0.
— Cuando i = j, el término es 1.
Asi, sélo sobreviven los términos con i = j:

n
u-Uv= E aibi
i=1

Conclusién: Queda demostrado que, en un marco cartesiano, el producto escalar es la suma de los

productos de las componentes homologas.

Demuestra que el producto vectorial de dos vectores se puede calcular usando sus coordenadas

en cualquier marco cartesiano segin se ha indicado.

Solucion 1.2.2. Hipotesis y Datos de Partida:

1) Trabajamos en 3D con la base especial {,7, 2}.

2) Propiedades definitorias del producto vectorial en esta base
- EXg=29%x2=2=%,2x3 =7 (ciclo dextrégiro).
— Por la propiedad anticonmutativa, el orden inverso invierte el signo: § x & = —2, etc.
— El producto de un vector por si mismo es nulo: Z x & = 0, etc.

3) Vectores definidos por coordenadas:

U= x0£+yo?)+z02

T=m2% + 519+ 212

Demostracion Paso a Paso:
1) Planteamiento:
U X U= (2o + Yol + 202) X (12 + 319 + 212)

2) Expansién (Distributiva):

= .’1?01'1(,@ X QAJ) + (L‘Oy1(£i' X :lj) + LL'()Zl(.iff X 2)
) +yoy1 (9 x §) + yoz1(J x 2)
T ZX7q Z

+ yoz1 (Y
)+ 2oy1(2 X §) + 2021(2 x 2)

X X
+Zol'1(2 X X

Ismael Sallami Moreno

Informatica Grafica

1.2 SESION 3 38

3) Simplificacién con Propiedades de la Base:

=0+ xoy12 + 1‘021(—2])
+ y0$1(—2) + 0+ yozlzi
+ 2019 + 20y1(—2) + 0

4) Agrupacién por componentes:

Componente Z : yoz1 — 20¥1
Componente § : 20T1 — Zp21

Componente 2 : zoy; — Yox1

U X U= (yoz1 — 20y1)% + (2071 — 2021)7 + (Toy1 — Yor1)2

Conclusion: El vector resultante en coordenadas es:

Yoz1 — ZoY1
UXT= Z0x1 — TRl
oY1 — Yox1

Esto coincide exactamente con la definicién matricial dada en el documento.

Demuestra que el producto vectorial de dos vectores es perpendicular a cada uno de esos dos

vectores.

Solucion 1.2.3. Datos de Partida:

1) Condicién de perpendicularidad: Dos vectores son perpendiculares si su producto escalar es
0.
2) Usaremos los resultados demostrados en los Problemas 3.1 y 3.2.

Demostracién (para):
Queremos probar que 4 - w = 0.

Sea W = i x U. Sus componentes son (del Prob 3.2):

Wz = Yoz1 — Z0Y1
Wy = 201 — To<1

Wz = ToY1 — Yox1
Calculamos el producto escalar i - & usando la férmula de componentes (del Prob 3.1):
U - W = ToWy + YoWy + 20W,
Sustituyendo los componentes de w:

= 2o(yoz1 — 2oy1) + Yo(2021 — oz1) + 20(Toy1 — Yox1)

= ToYoZ1 — To2oY1 + Yo20T1 — YoToZ1 + 20ToY1 — 20YoT1

Informatica Grafica Ismael Sallami Moreno

1.2 SESION 3 39

Reordenamos los términos para ver las cancelaciones:

— XoYoz1 se cancela con —yoZoz1 (son idénticos, el orden de factores reales no altera el producto).
— —xg2zoYy1 Se cancela con zgToyi.
— Yozox1 se cancela con —zgyox1.

Resultado:
u-w=0

(Nota: La demostracién para U es andloga, sustituyendo las coordenadas de ¥ en el producto escalar,

y también resultard en Q).

Conclusién: Hemos demostrado algebraicamente la propiedad geométrica fundamental mencionada
en la pagina 30: el producto vectorial genera una direcciéon perpendicular al plano formado por los
dos vectores originales.

Ejercicio 1.2.4

Demuestra que el producto escalar de vectores en 2D es invariante por rotacion. Es decir, que
para cualquier dngulo 6 y vectores @ y ¥ se cumple:

-5 = Ro(@) - Ry(¥)

Se requiere realizar la demostracién utilizando las coordenadas de los vectores en un marco

cartesiano arbitrario.

Solucion 1.2.4. Para demostrar la invariancia del producto escalar bajo una transformaciéon de
rotacién en el espacio euclideo bidimensional (R?), procederemos algebraicamente definiendo los
componentes de los vectores y la matriz de transformacion correspondiente.

Sean @ y ¥ dos vectores libres en R? definidos por sus componentes en un marco cartesiano:

La definicién estdndar del producto escalar (producto punto) en coordenadas cartesianas viene
dada por:
U T = UgUy + Uyty (1.1)

Sea Ry la transformacion de rotacién por un angulo 6 alrededor del origen. La matriz asociada a
esta transformacién en 2D, Mg, se define como:

cosf) —sind
sinf cosf

Aplicamos la transformacion lineal a los vectores 4 y ¥ mediante la multiplicaciéon matricial:

1. Para el vector @' = Ry():

cosf) —sinf Uy Uy cos 0 — uy sind

sinf cosf Uy Uy 5in 0 + u, cos ¢

=/

Denotamos las componentes transformadas como u/, = g cos — u, sinf y u;j = Uy sin @ + u, cosf.

Informatica Grafica Ismael Sallami Moreno

1.2 SESION 3 40

2. Para el vector ¥ = Ry(?):

. cosf) —sinf Vg vy cos 6 — v, sin 0
U = =
sinf cos6 Uy vy sin 0 + vy, cos 6

Denotamos las componentes transformadas como v}, = v, cosf — v, sinf y v'y = vy sinf + vy, cos .

—

Procedemos ahora a calcular el producto escalar de los vectores transformados, Ry(@) - Rg(7)

! PSR
Uy Vg + Uy Uy

Ry (@) - Ro(V) = (ug cos — uy sin @) (v, cosd — v, sin)

+ (ug sin 0 + u, cos 0) (v, sin @ + v, cos 9)
Expandimos los términos algebraicos:
Ry (i) - Ro(¥) = (upv, cos 0 — Uz Uy €OS 0 sin O — u, v, sin 6 cos O + uy vy sin? 0)
+ (ugv, sin? 0 + u v, sin 6 cos 6 + u,v, cos Osin § + u,v, cos 0)
Agrupamos los términos comunes en funcién de los coeficientes de los vectores originales:
Ro(@0) - Rg(¥) = upv,(cos? 6 + sin’ 0)
+ uy vy (sin? 6 + cos? 0)
+ Uy vy (— cos Osin 6 4 sin 6 cos)

+ Uy vy (— sin 0 cos @ + cos ' sin 6)

Aplicamos la identidad trigonométrica fundamental cos? §+sin? § = 1 y observamos que los términos
cruzados se cancelan:

—

Ro(0) - Rp(V) = tav2(1) + uyvy (1) 4 a0y (0) + uyv(0)

= Ug Vg + UyVy

Comparando este resultado con la definicién inicial en la Ecuacién (1), concluimos que:

Q.E.D.

Informatica Grafica Ismael Sallami Moreno

1.2 SESION 3 41

Demuestra que en 2D las rotaciones no modifican la longitud de un vector (isometria). Es

decir, que para cualquier dngulo 6 y vector ¥/, se cumple:

[1Ro (D) = [I7]]

Solucion 1.2.5. Para demostrar que la rotacién es una transformacién isométrica que preserva la
norma (longitud) de los vectores, utilizaremos la relacién fundamental entre la norma euclidea y el
producto escalar.

La definicién de la norma de un vector ¥ en funcién del producto escalar es:
ol = V-5
Elevando al cuadrado ambos lados, tenemos:
I>=7-¢ (1.2)

17

Consideremos ahora la norma al cuadrado del vector transformado Ry(?):

[Ro(¥)||* = Ry () - Ro(D)

Baséndonos en la propiedad demostrada en el Ejercicio 3.4 (invariancia del producto escalar bajo
rotacién), sabemos que para cualesquiera vectores @ y b, se cumple @ -b = Ry(a) - Ro(b).

En este caso particular, hacemos @ = U’y b=7. Aplicando la propiedad de invariancia:
Ry(0) - Ry(0) =0 - ¥

Sustituyendo esto en la expresién de la norma transformada:

1o (9)|? =7 ¥
Dado que ¥+ 7 = ||7]|? segtin la Ecuacién (2), obtenemos:

1Ro (9)]I* = |91
Tomando la raiz cuadrada positiva en ambos lados (dado que la norma es una magnitud no negativa):

[Ro(0)[| = [|7]

Por lo tanto, queda demostrado que la aplicacién de una matriz de rotacion Ry no altera la longitud

del vector, confirmando que las rotaciones son isometrias.

Informatica Grafica Ismael Sallami Moreno

1.2 SESION 3 42

Ejercicio 1.2.6

Demuestra que si rotamos en 2D un vector +90 grados (7/2) o -90 grados (—n/2), obtenemos
otro vector perpendicular al original. Es decir, si ||0]| = 7/2, entonces:

Solucién 1.2.6. Para demostrar la perpendicularidad entre un vector original ¥ y su versién rotada
+90°, utilizaremos la definicién algebraica del producto escalar y la matriz de rotacion especifica
para estos angulos.

Sea ¥ un vector arbitrario en R2:

La matriz de rotacién general Ry es:
cosf —sinf
Re - (' >
sinf cosf

Analizaremos los dos casos solicitados: § = 7/2y 0 = —m /2.

Caso 1: Rotacién de +7/2 (90°) Sustituimos § = 7/2 en la matriz de rotacién, sabiendo que

cos(m/2) =0y sin(w/2) = 1:
re- ())

7 .

Calculamos el vector transformado @' = Ry /5(¥)

5 0 -1 Ve _ [y

1 0 Uy Vg
Ahora calculamos el producto escalar entre el vector original y el transformado:
i

-0 = vp(—vy) + vy (Vg) = =00y + V05 =0

Caso 2: Rotacién de —7/2 (—90°) Sustituimos § = —7/2 en la matriz, sabiendo que cos(—7/2) =

0y sin(—n/2) =—1:
0 1
R_, /0=

Calculamos el vector transformado 7" = R_ /5(¥):
& 0 1 Ur) [vy
=10 Uy N —Vy

= v (vy) + vy (—vz) = Vvy — VgV, =0

Calculamos el producto escalar:

= o
v-v

Informatica Grafica Ismael Sallami Moreno

1.2 SESION 3 43

Conclusién: En ambos casos, el producto escalar es nulo. Dado que @ - b=0 < alb (para
vectores no nulos), queda demostrado que el vector rotado +90° es perpendicular al original.

Demuestra que una matriz de rotacién en 2D es siempre ortonormal, independientemente del

angulo. Esto implica demostrar que: 1. Sus filas son ortogonales entre si (perpendiculares). 2.
Sus columnas son ortogonales entre si. 3. Cada fila y cada columna tiene norma (longitud)
igual a 1.

Solucién 1.2.7. Una matriz M es ortonormal (u ortogonal) si cumple que MTM = I, lo cual
equivale a que sus filas y columnas formen una base ortonormal. Analizaremos las propiedades de
filas y columnas de la matriz de rotacién general.

cosf) —sinf
Ry = (sin@ cos >

Denotamos las filas como vectores 71,7 y las columnas como ¢, Ca:

Sea Ry la matriz de rotacién:

—

1= (cosf,—sin@), 7o = (sinf,cosb)
& cosf) —sin
"“lsing) T\ coso
1. Ortogonalidad de las filas: Calculamos el producto escalar 7 - 7a:

1 - 7o = (cos0)(sin) + (—sin6)(cosf) = sinf cosf — sinf cos§ = 0

Las filas son perpendiculares.

2. Normalidad de las filas (Longitud unitaria): Calculamos la norma al cuadrado de cada fila
usando la identidad cos? 6 + sin? 6 = 1:

|71 ||* = (cos0)? + (—sin#)? = cos? § +sin* =1 = ||/ =1
72| = (sin @)% + (cos0)* =sin® 0 + cos’ =1 = ||iH]| =1
3. Ortogonalidad de las columnas: Calculamos el producto escalar ¢ - ¢a:
€ - o = (cosB)(—sin) + (sin)(cos) = —sinfcosf + sinf cos§ = 0

Las columnas son perpendiculares.

4. Normalidad de las columnas:
[G1)1> = cos? 0 +sin?0 =1 = ||&1] =1
lEa]|? = (—sinf)? +cos? § = sin® O +cos’ 0 =1 = ||&a]| = 1

Conclusién: Dado que tanto las filas como las columnas son vectores unitarios y ortogonales entre

si para cualquier valor de 6, la matriz de rotacién Ry es siempre una matriz ortonormal.

Informatica Grafica Ismael Sallami Moreno

1.2 SESION 3 44

Ejercicio 1.2.8

Demuestra que, en 2D, el producto de una matriz de rotacién y una de escalado no es
conmutativo en general, excepto si el escalado es uniforme.

Solucion 1.2.8. Para analizar la conmutatividad entre la rotacion y el escalado, definiremos las
matrices correspondientes en el espacio bidimensional. Consideraremos las matrices de 2 x 2, dado
que ambas son transformaciones lineales y no requieren necesariamente coordenadas homogéneas
para demostrar esta propiedad (aunque el resultado es idéntico en 3 x 3 con la tltima fila/columna
canénica).

Sean las matrices de rotacién Ry y de escalado S(sz, sy):

Ry = Cf)Se —sin @ Cs— Sz O
sinf cosf 0 sy
Calculamos el producto Ry - S (aplicar escalado y luego rotacién):
cosf) —sinf sz O sycosf) —s,sinf
Ra . S — . = .
sind cosf 0 sy sysinf sy cosf
Calculamos el producto S - Ry (aplicar rotacién y luego escalado):

s 0 cosf) —sind sz cosf —s,sinf
S-Ryg= . = .
0 sy) \sinf cosf sysinf s, cosf
Para que las matrices conmuten, es decir, Ry - S = S - Ry, sus componentes deben ser idénticos

término a término. Comparamos los términos fuera de la diagonal principal:

1) Elemento (1,2): —s,sinf = —s,sinf = (s, — s,)sinf =0

2) Elemento (2,1): sysinf = sysinf = (s, — s,)sinf =0
Para que la igualdad se cumpla para un dngulo de rotacién general (sin @ # 0), es condicién necesaria
y suficiente que:

Sy = Sy

Conclusién: Si s, # s, (escalado no uniforme), los productos matriciales son distintos, demostrando
que la operacién no es conmutativa en general. Si s, = s, = s (escalado uniforme), la matriz
de escalado se convierte en sI (donde I es la identidad), la cual conmuta con cualquier matriz
cuadrada.

Ejercicio 1.2.9

Demuestra que en 2D, el producto de una matriz de rotacién y otra de traslacién (por un
vector no nulo) no es conmutativo.

Solucion 1.2.9. Dado que la traslacion es una transformacién afin y no lineal, es imprescindi-
ble utilizar coordenadas homogéneas para representarla como una multiplicacion matricial.
Trabajaremos con matrices de 3 x 3.

Informatica Grafica Ismael Sallami Moreno

1.2 SESION 3 45

Sea Ry la matriz de rotacién y 1% la matriz de traslacién por un vector t= (tz,ty):

cos) —sinf O 1 0 ¢,
Rg=|sinf cosf® 0, Te=]0 1 ¢t
0 0 1 0 0 1
Calculamos el producto Ry - Ty (primero se traslada, luego se rota):
cos) —sinf O 1 0 t, cosf) —sinf t;cosf —t,sind
Ry -Ty=|sinf cos¢ 0|0 1 ¢,|=|sin6 cosf t,sinf+t,cosd
0 0

Y
0 0 1 1 0 0 1

Geométricamente, esto rota el punto y también rota el vector de traslacion aplicado.

Calculamos el producto Ty - Ry (primero se rota, luego se traslada):

1 0 t, cosf —sinf 0 cosf) —sinf t,
T;-Re=10 1 ¢, sinf@ cosf 0] =|sind cosfd t,
0 0 1 0 0 1 0 0 1

Geométricamente, esto rota el punto alrededor del origen y luego aplica la traslacién original sin
modificar.

Comparacién: Observamos la tercera columna (la componente de traslacién resultante) de ambas

matrices resultantes:
tycos —t,sind te

tysin® +t,cosf | # | t,
1

Para que fuesen iguales en un caso general (6 # 0), se requerirfa que t, =0y t, = 0. Dado que el

enunciado especifica un vector de traslacion no nulo, concluimos que las matrices son distintas.

Conclusién: El orden de las operaciones altera el resultado final: rotar y luego trasladar lleva
a una posicién diferente que trasladar y luego rotar (donde el desplazamiento también sufre la

rotacién). Por tanto, no son conmutativas.

Ejercicio 1.2.10

Demuestra que el producto escalar de vectores en 3D es invariante por rotaciones entorno a
los ejes cartesianos, y que estas tampoco modifican la longitud de un vector.

Solucién 1.2.10. Para demostrar la invariancia del producto escalar en R3 bajo rotaciones cartesianas,
tomaremos sin pérdida de generalidad el caso de una rotacion alrededor del eje Z por un angulo 6.
El procedimiento es analogo para los ejes X e Y debido a la simetria ciclica de las coordenadas.

La matriz de rotacién R, y se define como:

cosf) —sinf 0
R,p=|sinf cosf O
0 0 1

Informatica Grafica Ismael Sallami Moreno

1.2 SESION 3 46

Sean U = (Ug, Uy, uz) y U = (Vz,vy,v,) dos vectores arbitrarios. El producto escalar original es:

<L

U = Uy + UyVy + ULV, (1.3)

Calculamos los vectores transformados @' = R, g(4) y V' = R, ¢(?):

Ug COS 0 — Uy, sin 0 Vg €08 0 — vy sin 0
@ = | ugsind +uycosf |, U =|wv,sind+v,cosd

Uz Uz

Ahora calculamos el producto escalar de los vectores transformados:

=/

@ -0 = (ugy cos @ — uy sin) (v, cosf — vy, sin b))
+ (ug sin 6 + uy, cos 0) (v, sin @ + v, cos 0)

+ uzv;

Expandiendo los términos correspondientes a las componentes x e y (idéntico al caso 2D):

= (uyv, cos O — Uz Uy o8 08in 0 — uy v, sin 6 cos + u, v, sin? 0)
+ (uz vy 8in* 0 + vy sin 0 cos O + uy v, cos 0 sin 6 + u, v, cos® 0)

+u,v,

Agrupando y simplificando usando sin? @ + cos? 6 = 1:

@' - ' = uyvg(cos? 0 + sin® 0) + uy v, (sin? 0 + cos? 0) + u v,

Uz Vg + UyVy + ULV,

—
v

I
gl

—

Invariancia de la longitud: Utilizando la relacién ||7]|> = ¥+ ¥ y la propiedad recién demostrada:
IR0 (D)||* = Rz 0(0) - Rep(¥) = 0 7 = ||]?

Tomando la rafz cuadrada, concluimos que ||R, ¢(?)| = ||7].

Demuestra que el producto vectorial de dos vectores rota igual que lo hacen esos dos vectores.

Es decir, para cualesquiera vectores u, ¥ y un angulo 6 con eje €, se cumple:

Solucion 1.2.11. Para esta demostracién, consideraremos la rotacién alrededor del eje Z (R,), ya
que la logica es extensible a cualquier eje cartesiano por permutacion de indices.

Informatica Grafica Ismael Sallami Moreno

1.2 SESION 3 47

Definimos w = 4 X 9. Sus componentes son:

Wy UyV; — Uy Vy

g

I

g
<

= | UzVUz — UgVy

W, UgVy — Uy Vg

Parte 1: Rotacién del producto vectorial original (R, ¢(w)) Aplicamos la matriz de rotacién

al vector w:
Wy cos 0 — wy sin

R, (W) = | wy sinf + w, cos

Wy

Sustituyendo los componentes de w:

R. (W) = (uyvs — usvy) cosf — (uzvg — uzv,)sind (1.4)
R, o(W)y = (uyv, — uyvy)sind + (uv, — uzv,) cosb (1.5)
R. ¢(W); = ugvy — uyvy (1.6)

Parte 2: Producto vectorial de los vectores rotados (@' x¢") Sean @' = R, g(@) y 7' = R, (7).
Sus componentes son:

=/

@ = (uge — uys, ugs+uyc, u;)
T = (vp¢ — vy$, Vg8 + vyc, V)

(donde ¢ = cos 6, s = sin6).

Calculamos la componente X de @’ x 0’

— A ’o
(U x V')y = uy v, — ujvy,

= (uz$ + uyc)v, — Uz (vgs + vyc)
= UgVz 8 + UyVpC — U Vg S — UL UyC

= c(uyv, — uvy) — s(UzVy — ULV,

Este resultado coincide exactamente con la Ecuacién (1).

Calculamos la componente Y de @’ x '

o /]
)y = UV — UV,
= Uy (vge — vyS) — (UgC — UuyS)V,
= UpUpC — UpVyS — UgVC + Uy, S

= 5(UyVs — UsVy) + (Uz V5 — UZV)

Este resultado coincide exactamente con la Ecuacién (2).

Calculamos la componente Z de 4’ x v':

(@ x¥),=u

I
o

(Uz€ — Uys) (VxS + vy) — (UgS + UyC) (Vae — vys)

Informatica Grafica Ismael Sallami Moreno

1.2 SESION 3 48

Desarrollando y simplificando:

= (Up¥2CS + UpVyC* — UyV28? — Uy SC) — (UpVpSC — UgVyS? + UyULC? — Uy, C8)
= u,v, (A + 5%) — uyv, (s> + c?)

= Ug Uy — UyVy

Este resultado coincide con la Ecuacién (3).

Conclusién: Dado que todas las componentes coinciden, queda demostrado que:

R, o(0 x ¥) =R, (1) X R, (V)

Ejercicio 1.2.12

Crea un script global (autoload) con una funcién llamada gancho (sin pardmetros) que crea y
devuelve un objeto de la clase Mesh con una polilinea azul como la de la figura (los ejes se han
dibujado por claridad).

Crea en tu proyecto un nodo 2D de tipo MeshInstance2D y en _ready asignale como malla
(propiedad mesh) el objeto resultado de llamar a gancho(), ponle un color azul (propiedad
modulate) y verifica que el gancho aparece en pantalla al ejecutar el proyecto.

Y+

209

Solucion 1.2.12. Solucién al problema 3.12:

Problema 3.12:

Crea un script global (autoload) con una funcidn
llamada gancho (sin parametros) que crea y
devuelve un objeto de la clase Mesh con una
polilinea azul como la de la figura (los ejes se han
dibujado por claridad).

Crea en tu proyecto un nodo 2D de tipo
MeshInstance2D y en _ready asignale como

malla (propiedad mesh) el objeto resultado de
llamar a gancho(), ponle un color azul (propie7
dad modulate) y verifica que el gancho aparece
en pantalla al ejecutar el proyecto.
xtends MeshInstance2D

~
o H H FHF H H OH OH OH HF F H

Informaética Grafica Ismael Sallami Moreno

1.2 SESION 3 49

15 func _ready():
16 self.mesh = Global.gancho ()
17 self.modulate = Color(0,0,1)

Ademaés, anadimos el codigo de gancho que se encuentra en el script global:

1 func gancho() -> ArrayMesh:

2 var vertices = PackedVector2Array ([
3 Vector2(0,0),
4 Vector2(1,0),

5 Vector2(1,1),
6 Vector2(o,1),
7 Vector2(0,2)

9

10 var arrays = []

11 arrays.resize(Mesh.ARRAY_MAX)

12 arrays[Mesh.ARRAY_VERTEX] = vertices

13

14 var mesh = ArrayMesh.new()

15 mesh.add_surface_from_arrays (Mesh.PRIMITIVE_LINE_STRIP,
arrays)

16 return mesh

Ejercicio 1.2.13

Crea un nodo 2D de tipo Node2D y llamalo Gancho_x4. En _ready, afddele cuatro nodos hijos
de tipo MeshInstance2D, cada uno de ellos con un malla creada con la funcién gancho del
problema anterior, pero con su transform modificada para que el objeto Gancho_x4 se vea
como en la figura (la rejilla y los ejes en rojo se han dibujado por claridad).

®

N

M

Solucion 1.2.13. Solucién al problema 3.13:

Informatica Grafica Ismael Sallami Moreno

1.2 SESION 3

50

3

4

6

34

35

41

extends Node2D

func _ready():

var malla_gancho = Global.gancho()

Definimos el centro de rotacidon observado en la imagen
var centro_rotacion = Vector2(-1, 1)

Creamos las 4 instancias
for i in range(4):

var instancia = MeshInstance2D.new()
instancia.mesh = malla_gancho
instancia.name = "Gancho_" + str (i)

Color azul para las aristas (modulate afecta a todo el
mesh)
instancia.modulate = Color (e, o, 1)

Calculamos el angulo: @, 90, 180, 270 grados

var angulo = i x (PI / 2.0) # usamos pi/2 ya que tenemos que
el circulo completo es 2pi y como tenemos 4 instancias, 2pi
/4 = pi/2

--- CALCULO DE LA MATRIZ DE TRANSFORMACION ---
Aplicamos la férmula: M = T(C) *x R(theta) * T(-C)

1. Matriz para mover el pivote al origen
var t_al_origen = Transform2D().translated(-centro_rotacion)

2. Matriz de rotacion
var rotacion = Transform2D().rotated(angulo)

3. Matriz para devolver el pivote a su sitio
var t_de_vuelta = Transform2D().translated(centro_rotacion)

En Godot, las matrices se multiplican en orden de aplicaci
on (Padre % Hijo),

pero aqui estamos componiendo una sola transformacidn
compleja.

E1 orden ldégico es: primero T_al_origen, luego Rotacion,
luego T_de_vuelta.

M * v = (T_vuelta * (Rot * (T_origen * v)))
instancia.transform = t_de_vuelta * rotacion * t_al_origen

add_child(instancia)

Nota: la funcion gancho() localmente:
func gancho() -> ArrayMesh:

Informaética Grafica

Ismael Sallami Moreno

1.3 SEsION 4 51

13 # var vertices = PackedVector2Array ([
Vector2(@, @), Vector2(1l, ©), Vector2(l, 1), Vector?2
(0, 1), Vector2(o, 2)
D

var am = ArrayMesh.new()

E=3

var arr = []

arr.resize (Mesh.ARRAY_MAX)

arr[Mesh.ARRAY_VERTEX] = vertices
am.add_surface_from_arrays(Mesh.PRIMITIVE_LINE_STRIP, arr)
return am

=
3
H OHE OHF OH OH OHF H

1.3 Sesion 4

Supongamos que queremos codificar una esfera de radio 1/2 y centro en el origen de dos
formas:

1) Por enumeracion espacial, dividiendo el cubo que engloba a la esfera en celdas, de
forma que haya k celdas por lado del cubo, todas ellas son cubos de 1/k de ancho.
Cada celda ocupa un bit de memoria (si su centro estd en la esfera, se guarda un 1, en
otro caso un 0).

2) Usando un modelo de fronteras (una malla indexada de tridngulos), en el cual se usa
una rejilla de tridngulos y aristas que siguen los meridianos y paralelos, habiendo en
cada meridiano y en cada paralelo un total de k vértices (se guarda unicamente la tabla
de vértices y la de tridngulos).

Asumiendo que un float y un int ocupan 4 bytes cada uno, contesta a estas cuestiones:

1) Expresa el tamano de ambas representaciones en bytes como una funcién de k.

2) Suponiendo que k = 16 calcula cudntos KB de memoria ocupa cada estructura.
3) Haz lo mismo asumiendo ahora que k = 1024 (expresa los resultados en MB).
4) Compara los tamafios de ambas representaciones en ambos casos (k =16 y k = 1024).

J

Solucion 1.3.1. Para resolver este ejercicio, analizaremos detalladamente los requisitos de memoria
de cada uno de los modelos propuestos, basandonos en la teoria de representacién de modelos
geométricos, especificamente la diferencia entre modelos de volimenes (enumeracién espacial) y
modelos de fronteras (mallas de poligonos).

1) Expresidn del tamatio en memoria como funcion de k.
Analicemos primero el modelo por enumeracion espacial.
El espacio que engloba a la esfera de radio r = 1/2 es un cubo de lado L = 2r = 1. Este
cubo se discretiza en una rejilla tridimensional de k celdas por lado. Por lo tanto, el niimero
total de celdas (véxeles) en el volumen es:

Nectdas =k X k x k = k>

El enunciado especifica que cada celda ocupa exactamente 1 bit. Para obtener el tamafio en
bytes, debemos dividir el nimero total de bits por 8 (dado que 1 byte = 8 bits).

Informatica Grafica Ismael Sallami Moreno

1.3 SEsION 4 52

3

k
Memenum (k) = 5 bytes

Analicemos ahora el modelo de fronteras mediante malla indexada de triangulos.

Una malla indexada consta de dos estructuras de datos principales: la tabla de vértices y la
tabla de tridngulos (indices).

El enunciado indica que la malla se forma siguiendo meridianos y paralelos con k vértices en
cada uno. Esto sugiere una topologia de rejilla rectangular de dimensiones k& x k mapeada

sobre la esfera. En consecuencia, el niimero de vértices ny es:
ny = kz

Para una malla cerrada y conexa que representa una esfera, topolégicamente equivalente a
una rejilla envolvente, el nimero de caras (tridngulos) ny se aproxima al doble del nimero de
vértices (segin la caracteristica de Euler para mallas triangulares cerradas donde np = 2ny).
Si consideramos una rejilla de (k —1) x (k — 1) cuadrildteros, y cada cuadrilatero se divide en
2 tridngulos, tendriamos 2(k — 1)? tridngulos. Para valores grandes de k, podemos aproximar
el nimero de tridngulos como:

np ~ 2k>

Calculamos ahora el uso de memoria para cada tabla:
1) Tabla de vértices: Cada vértice almacena 3 coordenadas (z,y, z) de tipo float. Si
cada float ocupa 4 bytes, el tamano de un vértice es 3 x 4 = 12 bytes.

Memyers = 12 X ny = 12k2 bytes

2) Tabla de tridngulos: Cada tridngulo almacena 3 indices de tipo int. Si cada int ocupa
4 bytes, el tamano de un tridngulo es 3 x 4 = 12 bytes.

Memy.; = 12 x np ~ 12 x (2k%) = 24k? bytes
El tamatio total de la malla indexada es la suma de ambas tablas:
Mempana (k) = 12k% + 24k* = 36k? bytes

2) Cdlculo de memoria para k =16 (en KB).
Sustituimos k£ = 16 en las funciones obtenidas:
Para la enumeracion espacial:

163 4096
Memenum(l6) = ? - T =512 bytes

Convirtiendo a Kilobytes (1 KB = 1024 bytes):

512
Memenum(16) = @ = 0,5 KB

Para la malla indexada:

Memmaia(16) = 36 x 16% = 36 x 256 = 9216 bytes

Informatica Grafica Ismael Sallami Moreno

1.3 SEsION 4 53

Convirtiendo a Kilobytes:

9216

Memma”a(lfi) = @ =

9 KB
3) Cdlculo de memoria para k = 1024 (en MB).
Sustituimos k = 1024 en las funciones. Nétese que 1024 = 219,
Para la enumeracion espacial:
(210)3 230

Memenum(1024) = 23 = 273 = 227 bytes

Sabemos que 1 MB = 10242 bytes = 220 bytes.

27

Memenum(1024) - 2% = 27 == 128 MB

Para la malla indezada:
Memmana(1024) = 36 x (1024)% = 36 x 22° bytes

Convirtiendo a Megabytes:
Memumaia(1024) = 36 MB

4) Comparacion de tamarios.
Los resultados obtenidos ilustran la diferencia fundamental en la complejidad espacial entre
los modelos volumétricos y los de frontera.

1) Caso k = 16 (Baja resolucion): La enumeracioén espacial ocupa menos memoria (0,5
KB) que la malla indexada (9 KB). Esto se debe a que, para resoluciones muy bajas,
el coste de almacenar coordenadas e indices explicitos (36 bytes por elemento efectivo)
supera el coste de almacenar simplemente 1 bit por celda, dado que el volumen total
(k3) atin no ha crecido lo suficiente para dominar la expresién.

2) Caso k = 1024 (Alta resolucién): La enumeracién espacial ocupa significativamente
mds memoria (128 MB) que la malla indexada (36 MB). Aqui se observa la naturaleza
ctibica O(k?) de la enumeracién espacial frente a la naturaleza cuadratica O(k?) del
modelo de fronteras. Al aumentar la resolucién, el nimero de celdas interiores (volu-
men) crece mucho méas rapido que el nimero de vértices necesarios para representar
la superficie (4rea).

Conclusion: La enumeracion espacial es extremadamente ineficiente en memoria para altas
resoluciones, mientras que los modelos de frontera (mallas) son mucho més eficientes para
representar objetos sélidos mediante su superficie, especialmente a medida que aumenta la
precisién requerida (k).

Informatica Grafica Ismael Sallami Moreno

1.3 SEsION 4 54

Ejercicio 1.3.2

Considera una malla indexada (tabla de vértices y tabla de caras, esta tltima con indices de

vértices) con una topologia de rejilla rectangular. La rejilla estd compuesta por n columnas de
pares de triangulos y m filas. Esto implica que la estructura tiene n + 1 columnas de vértices
y m + 1 filas de vértices, con n,m > 0.

La figura siguiente ilustra un esquema simplificado de dicha topologia (donde los puntos azules
representan los vértices y las lineas las aristas que forman los tridngulos):

Alto (m filas)

Ancho (n columnas de quads)

En relacion a este tipo de mallas, responde a las siguientes cuestiones:

(a) Supongamos que un float ocupa 4 bytes y un int ocupa también 4 bytes. ;Qué
tamano en memoria ocupa la malla completa en bytes? Ten en cuenta inicamente el
tamano de la tabla de vértices y la tabla de tridangulos. Expresa el tamafio como una
funciéon de m y n.

(b) Calcula el tamano exacto en KiloBytes (KB) suponiendo que m = n = 128.

(¢) Supongamos que m y n son ambos grandes (es decir, asumimos que términos como
1/ny 1/m son despreciables frente a 1). Deduce qué relacién aproximada existe entre
el nimero de caras (n¢) y el nimero de vértices (ny) en este tipo de mallas.

Solucion 1.3.2. Para resolver este problema, analizaremos por separado el consumo de memoria de
la geometria (tabla de vértices) y de la topologia (tabla de tridngulos).

(a) Calculo de la funcién de memoria Mem(m,n) en bytes
Primero determinamos la cantidad de elementos:
— Numero de vértices (ny): La rejilla tiene m filas de celdas y n columnas de celdas.
Los vértices se sitian en las intersecciones.

Filas de vértices = m + 1

Columnas de vértices =n + 1
ny=(m+1)(n+1)
— Numero de caras/tridngulos (n¢): Cada celda de la rejilla (formada por la
interseccién de una fila y una columna) es un cuadrildtero dividido en 2 tridngulos.

Numero de celdas = m xn

ng =2 x (mxn)=2mn

Ahora calculamos el uso de memoria sabiendo que 1 float = 4 bytes y 1 int = 4 bytes:
— Memoria de la Tabla de Vértices (My): Cada vértice almacena 3 coordenadas

Informatica Grafica Ismael Sallami Moreno

1.3 SEsION 4 55

(2,9, 2) de tipo float.
My =ny x 3 x 4 bytes = 12(m 4 1)(n + 1) bytes

— Memoria de la Tabla de Triangulos (Mr): Cada tridngulo almacena 3 indices
de vértices (i, j, k) de tipo int.

M7 = ne x 3 x 4 bytes = 12 x (2mn) bytes = 24mn bytes

Memoria Total (Mem):
Mem(m,n) = My + My

Mem(m,n) = 12(mn+m+n+ 1) + 24mn

Agrupando términos semejantes:

Mem(m,n) = 12mn + 12m + 12n + 12 4+ 24mn

‘ Mem(m,n) = 36mn + 12m + 12n + 12 bytes

(b) Caélculo para m =n =128
Sustituimos m y n por 128 en la formula obtenida:

Mem(128,128) = 36(128 x 128) + 12(128) 4 12(128) + 12

Mem(128,128) = 36(16384) + 1536 + 1536 + 12
Mem(128,128) = 589824 + 3084
Mem(128,128) = 592908 bytes

Para convertir a KiloBytes (KB), dividimos por 1024:

592908

Memoria en KB =
1024

~ 579,01 KB

Resultado: Aproximadamente 579 KB.
(c) Relacién asintética entre ng y ny
Partimos de las expresiones deducidas en el apartado (a):

ny=m+1)n+1)=mn+m+n+1

no = 2mn

Si asumimos que m y n son grandes, los términos lineales (m,n) y el término constante (1)
son despreciables frente al término cuadritico (mn). Matemdaticamente:

3 ny mn+m+n+1
Im —= lIm —m™m™M—— =

m,n—o00 MmN m,n— oo mn

1

Por tanto, para valores grandes, podemos aproximar:

ny & mn

Informatica Grafica Ismael Sallami Moreno

1.3 SEsION 4 56

Nota: se divide por el término de mayor grado porque de esta manera, en matemdticas,
vemos como se comporta en el infinito, otra opcion es el mismo limite de nc/nv.
Calculamos la relacién (ratio) entre el nimero de caras y el nimero de vértices:

ne 2mn 9

ny mn
Conclusién: En mallas cerradas o mallas de rejilla densas (donde los efectos de borde
son insignificantes), el nimero de caras (tridngulos) es aproximadamente el doble
que el nimero de vértices:

ne ~ 2ny

Ejercicio 1.3.3

Imagina de nuevo una malla con topologia de rejilla, en la cual hay n columnas de pares de
tridngulos y m filas. Supongamos que usamos una representacién como tiras de tridngulos
(Triangle Strips), de forma que cada fila de tridngulos (con 2n tridngulos) se almacena en una
tira independiente, habiendo un total de m tiras.
La estructura de datos consta de una tabla de punteros a tiras (que tiene un entero para el
ndimero de tiras y m punteros, donde cada puntero ocupa 8 bytes) y los arrays de coordenadas
de las tiras. Asume que las coordenadas son de tipo float (4 bytes) y que no se usan indices
(las coordenadas se almacenan explicitamente en el orden de la tira).
Responde a las siguientes cuestiones:
(a) Indica qué cantidad de memoria ocupa esta representacion en dos casos:

(1) Como funcién de n y m, en bytes.

(2) Suponiendo m =n = 128, en KB.

(b) Para m y n grandes (asumiendo que los términos lineales son despreciables frente a
los cuadraticos), describe qué relacién hay entre el tamafio en memoria de la malla
indexada (Problema 4.2) y el tamaifio de la malla almacenada como tiras de tridngulos.

(c) Sisuponemos que la transformacién de cada vértice se hace en un tiempo constante
igual a la unidad, describe qué relacién hay entre los tiempos de procesamiento de
vértices para esta malla cuando se representa como una malla indexada y como tiras

de triangulos.

Solucion 1.3.3. Para resolver este ejercicio, primero debemos determinar cudntos vértices se almace-

nan explicitamente en una tira de tridngulos que representa una fila de la rejilla.

— Una tira de tridngulos que contiene k tridngulos requiere k + 2 vértices. Basicamente, sabemos
que cada nuevo triangulo en la tira comparte dos vértices con el tridngulo anterior, si para 2
triangulos necesitamos 4 vértices, por induccién (3 vértices x (k-1) restantes x 1 vértice que
anadimos) se llega a la férmula & + 2.

— En la rejilla descrita, cada fila contiene n celdas cuadradas (pares de tridngulos). Por lo tanto,
el ntimero de tridngulos por fila (por tira) es k = 2n.

— El ntimero de vértices almacenados por cada tira es:

Viira = (2n) +2 = 20 + 2
— Cada vértice consta de 3 coordenadas (x,y, z) de tipo float (4 bytes cada uno). El tamaio

de un vértice es:
Bvertice =3x4 bytes =12 bytes

Informatica Grafica Ismael Sallami Moreno

1.3 SESION 4 57

Ejemplo de una tira (n = 3 quads, 2n = 6 tridngulos, 2n + 2 = 8 vértices)

(a) Célculo de Memoria

(1) Funcién de n y m en bytes

El tamano total M;.q; se compone del tamano de los datos de las tiras y la sobrecarga de la
estructura de punteros.

1) Memoria de los vértices: Hay m tiras.

Mgeom = m x (2n + 2) vértices x 12 bytes/vértice

Mgeom = 12m(2n + 2) = 24nm + 24m bytes

2) Memoria de la tabla de punteros: Contiene 1 entero (4 bytes) y m punteros (8 bytes

c/ul).

Mestructura =44+8m byteS

3) Memoria Total:
Miotar(n,m) = (24dnm + 24m) + (8m + 4)

’ Miotai(n, m) = 24nm + 32m + 4 bytes ‘

(2) Calculo para m =n = 128

Sustituimos los valores en la férmula obtenida:
Miotar(128,128) = 24(128 x 128) 4 32(128) + 4

Miorar = 24(16384) + 4096 + 4

Miotar = 393216 4 4096 4 4 = 397316 bytes

Para convertir a Kilobytes (asumiendo 1 KB = 1024 bytes):

397316
Kp = o ~ 388,00

(b) Relacién de tamano con Malla Indexada

Para n, m grandes, solo consideramos los términos de mayor orden (nm).
1. Tamaiio Malla Indexada (del Problema 4.2):

— Vértices tnicos: = nm. Tamaifio: nm x 12 bytes.

— Tridangulos: =~ 2nm. Indices: 2nm x 3 indices x 4 bytes = 24nm bytes. El célculo de los indices
ha sido nimero de tridngulos por 3 indices por tridngulo por 4 bytes por indice.

— Total Indexada: 12nm + 24nm = 36nm bytes.

2. Tamano Tiras de Tridngulos (obtenido en a):

lcada uno

Informatica Grafica Ismael Sallami Moreno

1.3 SEsION 4 58

— Total Tiras: 24nm bytes.
Comparacion:

Calculamos la relacién (ratio) entre ambas representaciones:

Memoria Tiras N 24nm 2

Memoria Indexada 36nm 3

Conclusiéon:

La representacién mediante tiras de tridngulos ocupa aproximadamente el 66.6 % (dos tercios) de
la memoria que ocupa la malla indexada para esta topologia de rejilla. Esto se debe a que, aunque
las tiras duplican los vértices compartidos entre filas adyacentes, evitan el coste de almacenar
3 enteros por cada triangulo, que es mas costoso que almacenar coordenadas repetidas en este
escenario especifico.

(¢) Comparacién de tiempos de procesamiento

El tiempo de procesamiento de vértices (Tproc) en la GPU depende del nimero de veces que se debe
ejecutar el Verter Shader.

1. Malla Indexada:

Gracias al Post-Transform Cache de la GPU, los vértices indexados suelen procesarse una sola vez
por cada vértice unico (idealmente).

Vunicos = nm = Tinder X nM

2. Tiras de Tridngulos (No Indexadas):

En la implementacién descrita (arrays de arrays), los vértices se envian explicitamente por cada
tira. Los vértices que se encuentran en la frontera entre la fila ¢ y la fila ¢ + 1 estan duplicados
en memoria (aparecen en la tira i y en la tira i + 1). La GPU no sabe que son el mismo vértice
geométrico y debe procesarlos dos veces.

Viiras = m(2n + 2) = 2nm = Tyiras X 2nm

Conclusién:

Ttiras ~ 2nm -9

Tindez nm
El tiempo de procesamiento usando tiras de tridngulos independientes (no indexadas) es apro-
ximadamente el doble que usando una malla indexada. Aunque las tiras ahorran memoria de
almacenamiento en disco/RAM en este caso, son menos eficientes computacionalmente porque

obligan a la GPU a transformar los mismos vértices frontera multiples veces.

Informatica Grafica Ismael Sallami Moreno

1.3 SEsION 4 59

Ejercicio 1.3.4

Supongamos una malla cerrada, simplemente conexa (topoldgicamente equivalente a una

esfera), cuyas caras son tridngulos y cuyas aristas son todas adyacentes a exactamente dos
caras (la malla es un poliedro simplemente conexo de caras triangulares).

Considera el nimero de vértices ny, el nimero de aristas n4 y el niimero de caras nc en este
tipo de mallas.

Demuestra que cualquiera de esos nimeros determina a los otros dos, en concreto, demuestra
que se cumplen estas dos igualdades:

na=3(ny —2)

ng = 2(ny — 2)

J

Solucion 1.3.4. Para demostrar las igualdades propuestas, utilizaremos dos propiedades fundamen-
tales de la topologia de superficies cerradas y de las mallas triangulares. Procederemos paso a paso
estableciendo un sistema de ecuaciones.

1) Aplicacién de la Férmula de Euler-Poincaré:
Dado que el enunciado especifica que la malla es cerrada y topolégicamente equivalente a
una esfera (género g = 0), se cumple la caracteristica de Euler para poliedros convexos:

ny —na+nc =2 (1.7)

Donde:
— ny: Numero de vértices.
— n4: Namero de aristas.
— n¢: Numero de caras.
2) Relacién de adyacencia Caras-Aristas:
En una malla compuesta exclusivamente por tridngulos, cada cara tiene exactamente 3 aristas.
Ademés, al ser una variedad cerrada (manifold), cada arista es compartida exactamente por
2 caras.
Podemos contar el nimero total de ”lados” de los triangulos de dos formas:
— Multiplicando el niimero de caras por 3: 3 - nc.
— Multiplicando el nimero de aristas por 2 (ya que cada arista cuenta para dos caras):
2-n A-
Tgualando ambas cantidades obtenemos la segunda ecuaciéon fundamental:

2 . 3
3ng =2n, = ng = §nA obien ny = inc (1.8)

3) Demostracién de nc = 2(ny — 2):

Sustituimos n4 en la Ecuacién (1.7) utilizando la relacién obtenida en (1.8) (na4 = 2nc¢):
3
ny — §nc +ng =2

Multiplicamos toda la ecuacién por 2 para eliminar la fraccion:

2ny — 3ng + 2ng =4

Informatica Grafica Ismael Sallami Moreno

1.3 SEsION 4 60

Simplificamos los términos de n¢:

an—nc:4

Despejamos n¢:
nc = 271\/ —4

Factorizamos el 2:

‘nc:2(nv—2)‘

Q.E.D. (Queda demostrado que el nimero de caras es aproximadamente el doble que el de
vértices).

4) Demostracién de ny = 3(ny — 2):
Partimos de nuevo de la Ecuacion (1.7), pero esta vez sustituimos n¢c despejandolo de (1.8)

como ng = %nA:

2
ny —na + <3nA> =2

Multiplicamos toda la ecuacién por 3 para eliminar la fraccién:
3ny —3ng +2n4 =6
Simplificamos los términos de n4:
3ny —nyg =6

Despejamos n 4:
ng =3ny —6

Factorizamos el 3:

’nA:?)(nva)‘

Ejemplo: Tetraedro (ny =4,n4 = 6,nc = 4)

Informatica Grafica Ismael Sallami Moreno

1.3 SEsION 4 61

Ejercicio 1.3.5

En una malla indexada, queremos anadir a la estructura de datos una tabla de aristas. Sera

un vector ari, que en cada entrada tendrd una tupla de tipo Vector2i (contiene dos int) con
los indices en la tabla de vértices de los dos vértices en los extremos de la arista. El orden en
el que aparecen los vértices en una arista es indiferente, pero cada arista debe aparecer una
sola vez.

Escribe el codigo de una funciéon GDScript para crear y calcular la tabla de aristas a partir de
la tabla de tridangulos. Intenta encontrar una solucién con la minima complejidad en tiempo y
memoria posible. Suponer que el nimero de vértices adyacentes a uno cualquiera de ellos es
como mucho un valor constante k£ > 0, valor que no depende del nimero total de vértices, que
llamamos n.

Considerar dos casos:

(a) Los tridngulos se dan con orientacién no coherente: esto quiere decir que si un tridngulo
estd formado por los vértices 1, j, k, estos tres indices pueden aparecer en cualquier
orden en la correspondiente entrada de la tabla de tridngulos. Ademads, no sabemos si
la malla es cerrada o no.

(b) Los tridngulos se dan con orientacién coherente: esto quiere decir que si dos tridngulos
comparten una arista entre los vértices ¢ y j, entonces en uno de los tridngulos la
arista aparece como (i,7) y en el otro aparece como (j,i). Ademds, asumimos que
la malla es cerrada, es decir, que cada arista es compartida por exactamente dos
tridngulos.

Solucion 1.3.5. Para resolver este problema, debemos iterar sobre la tabla de tridngulos y extraer
las aristas potenciales. La diferencia fundamental entre los dos casos radica en como garantizamos
la unicidad de las aristas (evitar duplicados) de manera eficiente.

Caso (a): Orientacién no coherente y malla general

En este escenario, no podemos predecir el orden de los indices ni cuantas veces aparece una arista

(podria ser 1 si es frontera, o 2 si es interna, o més si la malla no es "manifold”).
Estrategia:

1) Recorremos cada tridngulo y extraemos sus 3 aristas: (vg,v1), (v1,v2) y (ve,vp).

2) Para identificar una arista de forma tnica sin importar el orden (es decir, que la arista i — j
sea igual a j —1), ordenamos los indices de cada par: guardamos siempre (min(z, j), max(s, j)).

3) Usamos una estructura de datos tipo Set (Conjunto) o un Diccionario para almacenar las
aristas encontradas. Esto elimina duplicados automéaticamente con una complejidad promedio
de O(1) por insercién.

Cdédigo GDScript:

1 func calcular_aristas_caso_a(triangulos: Array[Vector3il]) ->
Array[Vector2il:

2 var aristas_unicas = {} # Usamos un diccionario como Set
3 for t in triangulos:

4 # Extraemos los 3 pares de vértices

5 var pares = [

6 Vector2i(t[o]l, t[11),
7 Vector2i(t[1]1, t[2]),
8 Vector2i(t[2], t[e])

Informatica Grafica Ismael Sallami Moreno

1.3 SEsION 4 62

9 1

10 for par in pares:

11 # Normalizamos la arista: (menor, mayor)
12 var a = par.x

13 var b = par.y

14 var key: Vector2i

15 if a < b:

16 key = Vector2i(a, b)

17 else:

18 key = Vector2i(b, a)

19 # Insertamos en el diccionario (la clave evita

duplicados)

20 aristas_unicas[key] = true

21 # Convertimos las claves del diccionario a un Array
22 var ari: Array[Vector2i] = []

23 for key in aristas_unicas.keys():

24 ari.append(key)

25 return ari

Complejidad:

— Tiempo: O(Ny), donde Ny es el nimero de tridngulos (asumiendo insercién en hash map
constante).

— Memoria: O(N,), donde N, es el nimero de aristas tnicas, necesario para el diccionario
auxiliar.

Caso (b): Orientacién coherente y malla cerrada

En este escenario, tenemos una propiedad topoldgica fuerte: cada arista interna es compartida por
exactamente dos tridngulos. Debido a la orientacién coherente, si la arista conecta los vértices A y
B:

— En el Tridngulo 1 aparecerd como secuencia --- - A — B — ...
— En el Tridngulo 2 aparecerd como secuencia --- — B — A — ...

Estrategia: Para evitar duplicados sin usar memoria extra (diccionarios), podemos aplicar una
regla de seleccién simple: Solo anadimos la arista si el indice de origen es menor que el
indice de destino (i < j).
— Cuando procesemos el par (i,) donde i < j, lo guardamos.
— Cuando procesemos el par (j,4) (que existird obligatoriamente en el tridngulo vecino), como
J > 1, lo ignoramos.

Esto garantiza que cada arista se anade exactamente una vez.

Cdédigo GDScript:

1 func calcular_aristas_caso_b(triangulos: Array[Vector3il) ->
Array[Vector2i]:

2 var ari: Array[Vector2i] = []

3 for t in triangulos:

4 # Definimos los 3 pares tal cual aparecen en el orden

Informatica Grafica Ismael Sallami Moreno

1.3 SEsION 4 63

del triangulo
5 # Arista 0-1
6 if t[e] < t[1]:
7 ari.append(Vector2i(t[0], t[1]1))

8 # Arista 1-2

9 if t[1] < t[2]:

10 ari.append(Vector2i (t[1], t[2]))
11 # Arista 2-0

12 if t[2] < t[o]:

13 ari.append(Vector2i(t[2], t[0]))

14 return ari

Complejidad:

— Tiempo: O(NV). Es extremadamente réapido porque solo implica comparaciones de enteros.
— Memoria: O(1) de memoria auxiliar (no necesitamos estructuras intermedias como diccionarios,
escribimos directamente en el resultado).

Ejercicio 1.3.6

Escribe el pseudo-codigo de la funcién para calcular el area total de una malla indexada de
tridngulos, a partir de la tabla de vértices y de la tabla de tridngulos.
Serd una funcién GDScript que acepta ambas tablas:
— vertices: un array de tipo Vector3 que contiene las posiciones espaciales.
— triangulos: un array de tipo Vector3i, donde cada elemento contiene los tres indices
enteros que forman una cara.
La funcién debe devolver el drea total como un valor de punto flotante (float).

Solucion 1.3.6. Para resolver este problema, debemos basarnos en la geometria vectorial. El area de
cualquier poligono complejo en 3D (la malla) es la suma de las dreas de sus primitivas individuales
(los tridngulos).

Fundamento Matemdtico

El drea de un tridngulo en el espacio 3D definido por tres puntos Py, Py, P> se puede calcular
utilizando el producto vectorial (o producto cruz).

1) Definimos dos vectores que representen dos lados del tridngulo partiendo de un vértice comun,
por ejemplo Ppy:
P -P

IS
Il

P - P

S
Il

2) El producto vectorial @/ = @ x U genera un vector perpendicular al plano del tridngulo.

3) La magnitud (o longitud) de este vector resultante, |||, es igual al drea del paralelogramo
formado por los vectores 4 y .

4) Dado que un tridngulo es la mitad de un paralelogramo, el drea del tridngulo es la mitad de
dicha magnitud:

) 1, .
Areay,; = §||u x 7|

Informatica Grafica Ismael Sallami Moreno

1.3 SESION 4 64

Implementacion en GDScript

El algoritmo consiste en iterar sobre la tabla de tridAngulos, recuperar las coordenadas de los vértices
usando los indices, calcular el drea de cada tridngulo individual y acumularla en una variable total.

1 func calcular_area_malla(vertices: Array[Vector3], triangulos:
Array[Vector3i]) -> float:

2 var area_total: float = 0.0

3 for t in triangulos:

vertices[t[0]]
vertices[t[1]]
vertices[t[2]]
7 var u: Vector3 = pl - po

] var p@: Vector3

5 var pl: Vector3
6 var p2: Vector3

8 var v: Vector3 = p2 - po
9 var vector_area: Vector3 = u.cross(v)
10 var area_triangulo: float = vector_area.length() * 0.5

11 area_total += area_triangulo
12 return area_total

Anélisis de complejidad: Si N; es el ndmero de tridngulos (longitud del array triangulos), la
complejidad temporal es O(Ny), ya que realizamos un nimero constante de operaciones matematicas
(restas y producto vectorial) por cada cara de la malla.

Informatica Grafica Ismael Sallami Moreno

1.4 SESION 5 65

1.4 Sesion 5

Implementa un proyecto cuya escena principal tenga un nodo de tipo Node2D con varios nodos
hijos, que formen la figura con un cuadrado de lado 2, centrado en el origen, y con un tridngulo
inscrito.

El cuadrado debe estar relleno de azul claro, el tridngulo de blanco, y las aristas deben verse
de color azul oscuro.

Solucion 1.4.1. Solucién al problema 5.1:

1 # Problema 5.1:

Implementa un proyecto cuya escena principal tenga un de tipo
Node2D con

3 # varios nodos hijos, que formen la figura con un cuadrado de

¥

lado 2, centrado

4+ # en el origen, y con un tridngulo inscrito. El cuadrado debe
estar relleno de azul

5 # claro, el triangulo de blanco, y las aristas deben verse de
color azul oscuro.

s extends Node2D

10 # Referencia al Singleton (Autoload) que contiene las
herramientas

11 # const Utils = preload(”"res://FuncionesAuxiliaresT5.gd"”) # otra
opcion posible

12 # NOTA: Si ya lo tenemos configurado como Autoload global,
puedes usar directamente

13’ # el nombre 'FuncionesAuxiliaresT5' en lugar de la variable
Utils'.

15 func _ready():

17 # DEFINICION DE GEOMETRIA
18 # Cuadrado de lado 2 centrado en el origen: va de -1 a 1 en X

e Y.
19 # Triangulo inscrito: definimos vértices que quepan dentro del
cuadrado.
20 # e e s ———

21

Informaética Grafica Ismael Sallami Moreno

1.4 SESION 5

66

38

39

10

41

54

Vértices para el RELLENO del cuadrado (2 triangulos para
formar un quad)

var v_cuadrado_relleno = PackedVector2Array ([
Vector2(-1, -1), Vector2(1l, -1), Vector2(-1, 1), # Triangulo
1
Vector2(1, -1), Vector2(1, 1), Vector2(-1, 1) # Triangulo
2

D

Vértices para el BORDE del cuadrado (Polilinea cerrada)
var v_cuadrado_borde = PackedVector2Array ([

Vector2(-1, -1), Vector2(l, -1),

Vector2(1, 1), Vector2(-1, 1),

Vector2(-1, -1) # Repetimos el primero para cerrar

D

Vértices para el RELLENO del triangulo (1 tridngulo simple)
Lo hacemos un poco mas pequeio para que se vea "dentro”
claramente
var v_triangulo_relleno = PackedVector2Array ([
Vector2(-0.5, -0.5), Vector2(0.5, -0.5), Vector2(o, 0.8)
D

Vértices para el BORDE del triadngulo (Polilinea cerrada)
var v_triangulo_borde = PackedVector2Array ([

Vector2(-0.5, -0.5), Vector2(0.5, -0.5),

Vector2(@, ©.8), Vector2(-0.5, -0.5)

D

1. Crear el cuadrado relleno (Azul Claro)

Usamos una funcidén local porque el Autoload solo crea
LINE_STRIP

var mesh_cuadrado_relleno = FuncionesAuxiliaresT5.
_crear_malla_rellena(v_cuadrado_relleno)

var nodo_cuad_relleno = FuncionesAuxiliaresT5.
CrearMeshInstance2D(mesh_cuadrado_relleno, Transform2D())

nodo_cuad_relleno.modulate = Color(0.6, 0.8, 1.0) # Azul claro

add_child(nodo_cuad_relleno)

2. Crear el borde del cuadrado (Azul Oscuro)

Usamos la funcidon del Autoload (genera lineas)

var mesh_cuadrado_borde = FuncionesAuxiliaresT5.CrearArrayMesh
(v_cuadrado_borde)

var nodo_cuad_borde = FuncionesAuxiliaresT5.

Informatica Grafica

Ismael Sallami Moreno

1.4 SESION 5

67

69

CrearMeshInstance2D(mesh_cuadrado_borde, Transform2D())
nodo_cuad_borde.modulate = Color (0.0, 0.0, ©.5) # Azul oscuro
Opcional: aumentar grosor de linea si se usa un material

especifico,

pero por defecto Godot dibuja lineas de 1px.
add_child(nodo_cuad_borde)

3. Crear el triangulo relleno (Blanco)

var mesh_tri_relleno = FuncionesAuxiliaresT5.
_crear_malla_rellena(v_triangulo_relleno)

var nodo_tri_relleno = FuncionesAuxiliaresT5.
CrearMeshInstance2D(mesh_tri_relleno, Transform2D())

nodo_tri_relleno.modulate = Color.WHITE # Blanco

add_child(nodo_tri_relleno)

4. Crear el borde del triangulo (Azul Oscuro)

var mesh_tri_borde = FuncionesAuxiliaresT5.CrearArrayMesh(
v_triangulo_borde)

var nodo_tri_borde = FuncionesAuxiliaresT5.CrearMeshInstance2D
(mesh_tri_borde, Transform2D())

nodo_tri_borde.modulate = Color (0.0, 0.0, ©0.5) # Azul oscuro

add_child(nodo_tri_borde)

Ajuste de visualizacidn: Mover todo al centro de la pantalla
para verlo mejor
position = get_viewport_rect().size / 2
scale = Vector2(100, 100) # Escalamos porque 2 pixels es muy
pequefo # al activarlo se ve justo en el medio de toda la
vista por lo que hay que hacer muy pequeifa la misma

Informatica Grafica

Ismael Sallami Moreno

1.4 SESION 5

68

Ejercicio 1.4.2

Crea un proyecto Godot con una escena principal con un nodo raiz compuesto. Ese nodo
tendré tres hijos, cada uno es una instancia de la escena del problema anterior, pero con una
transformacién distinta.

\/

Solucion 1.4.2. Solucién al problema 5.2:

1

N
Ut

26

extends Node2D

Cargamos la escena del Problema 5.1 para instanciarla
const ESCENA_BASE = preload("res://escenaHijos/problema_5_1.tscn

n)

; # Definimos una escala base para que se vea bien en pantalla
const S =1

func _ready():
Centramos todo el conjunto en la pantalla
position = Vector2 (200, 300)

var ins1l = ESCENA_BASE.instantiate ()
insl.scale = Vector2(S, S)
ins1.position = Vector2(o, 0)
add_child(ins1)

CALCULO DEL PUNTO DE CONEXION 1 -> 2
La esquina superior derecha del cuadrado (insl) en

coordenadas locales es (1, -1).

En coordenadas globales (relativas al padre) es: (S, -S).

INSTANCIA 2: ROMBO (ROTADO 45 GRADOS)

Informaética Grafica

Ismael Sallami Moreno

1.4 SESION 5 69

28

29

30

31

32

33

34

36

38

39

40

41

43

44

46

60

61

62

63

64

var ins2 = ESCENA_BASE.instantiate ()
ins2.scale = Vector2(S, S)
ins2.rotation_degrees = 135

CALCULO DE POSICION PARA CONECTAR:

E1 rombo tiene su vértice IZQUIERDO a una distancia de 'sqrt
(2) * S' de su centro.

Queremos que ese vértice coincida con la esquina (S, -S) del

cuadrado.
PosX = (Posicidn Borde Cuadrado) + (Distancia al centro del
Rombo)

PosX = S + (S * sqrt(2))
PosY = S (para alinearse con la parte superior del cuadrado)

var offset_rombo = S x sqrt(2)
ins2.position = Vector2(S + offset_rombo, S)

add_child(ins2)

CALCULO DEL PUNTO DE CONEXION 2 -> 3

E1 vértice DERECHO del rombo estd a 'offset_rombo' a la
derecha de su centro.

Posicidén Global Vértice Derecho = ins2.position + (
offset_rombo, 0)

INSTANCIA 3: RECTANGULO INVERTIDO (ESCALADO)

var ins3 = ESCENA_BASE.instantiate ()

Escalado (2, -1):

X = 2 (Doble de ancho)

Y = -1 (Reflexiodon vertical, el triangulo apunta abajo)
ins3.scale = Vector2(2 x S, -S)

CALCULO DE POSICION PARA CONECTAR:

La "esquina superior izquierda” visual de este rectangulo
corresponde

geométricamente a (-1, 1) local antes de escalar, o (-2S, -S
) después de escalar.

Queremos que (-2S, -S) coincida con el vértice derecho del
rombo .

Coordenada X del vértice derecho del rombo:
var x_conexion = ins2.position.x + offset_rombo

La posicion del centro de ins3 debe ser tal que su izquierda
(-2S) toque la conexidn.

Informaética Grafica Ismael Sallami Moreno

1.4 SESION 5 70

66 ins3.position.x = x_conexion + (2 * S)

68 # Coordenada Y: Queremos que la parte superior (-S visual)
toque la conexidén (ins2.y = -S)

69 # Como ins2 estd en Y = -S y su vértice derecho esta en Y=0
relativo a él...

70 # Espera, el vértice derecho del rombo estad en la misma Y que
su centro (ins2.position.y).

71 # ins2.position.y es -S.

72 # La parte superior del rectangulo estd en -S relativo a su
centro (0).

73 # Por tanto, si ponemos el centro de ins3 en Y=0, su parte
superior estara en -S.

74 ins3.position.y = @

76 add_child(ins3)

Ejercicio 1.4.3

Implementa un proyecto Godot con una funcién Tronco que crea y devuelve un Node2D con
dos nodos hijos que forman la figura de aqui abajo (uno para el relleno y otro para las aristas).
Tabla de coordenadas:

(+0,0,+0,0)
(+1,0,+40,0)
(+1,0,+1,0)
(+2,0, +2,0)
(+1,5,4+2,5)
(+0,5,+1,5)
(+0,0, +3,0)
()
()

—0,5,+3,0
40,0, +1,5

N O Ot ks W N = O

Informaética Grafica Ismael Sallami Moreno

1.4 SESION 5

71

Solucion 1.4.3. Solucién al problema 5.3:

1 # Problema 5.3:
2o # Implementa un proyecto Godot con una funcidén Troncoque crea y

devuelve

3 # un Node2D con dos nodos hijos que forman la figura de aqui

abajo (uno para
4 # el relleno y otro para las aristas).

¢ # PARTIMOS DE QUE EN 2D EL SENTIDO DA IGUAL, PERO SABEMOS QUE ES

HORARIO

s extends Node2D

10 func _ready():

11 # Generamos el tronco

12 var tronco = Tronco ()

14 # Lo anadimos a la escena
15 add_child(tronco)

18 # Funcion:
19 # Descripcion:
y borde)

Tronco

Crea un Node2D compuesto por dos mallas (relleno

20 # siguiendo la tabla de coordenadas de la pagina 60.

22 func Tronco() -> Node2D:

w =" N N =

1

0)

.0)
.0)
.0)
.5)
.5)
.0)
3.0)
.5)

23 var n Node2D.new()

24

25 # 1. Definicidn de

26 var v@ Vector2(0.0,

27 var vl Vector2 (1.0,

28 var v2 Vector2 (1.0,

29 var v3 Vector2(2.0,

30 var v4 Vector2 (1.5,

31 var vb5 Vector2(0.5,

32 var vb6 Vector2(90.0,

33 var v7 Vector2(-0.5

34 var v8 Vector2(0.0,

35

36 # ooosoocoososososssssoos
57 # A. MALLA DE RELLENO

38 # ooooooosooooosoosoasoes
39 # Como el poligono es

manualmente.

40 # Dividimos la figura

superficie.

Vértices segln la tabla del PDF
0.

E1 "entrepierna” o bifurcacion

céncavo, debemos triangularlo

en 7 triangulos para cubrir toda la

Informaética Grafica

Ismael Sallami Moreno

1.4 SESION 5 72

41 var vertices_relleno = PackedVector2Array ([

42 # Base del tronco (Cuadrilatero 0-1-2-8 dividido en dos)
43 vo, vil, v2,

44 v, v2, v8,

45

46 # Triangulo central de unidon (conecta tronco con ramas)
47 v8, v2, Vv5,

48

49 # Rama Derecha (Cuadrilatero 2-3-4-5 dividido)

50 v2, v3, v4,

51 v2, v4, v5,

53 # Rama Izquierda (Cuadrilatero 5-6-7-8 dividido)

54 v5, v6, V7,
55 v, v7, v8
56 1

58 # Usamos la funcidn local auxiliar para crear malla de tipo
TRIANGLES

59 var malla_relleno = FuncionesAuxiliaresT5._crear_malla_rellena
(vertices_relleno)

61 # Instanciamos usando la funcioéon del autoload y asignamos
color lavanda/azul claro

62 var inst_relleno = FuncionesAuxiliaresT5.CrearMeshInstance2D(
malla_relleno, Transform2D())

63 inst_relleno.modulate = Color(0.7, 0.7, 1.0)

64 n.add_child(inst_relleno)

66 F e

67 # B. MALLA DE BORDE (Linea)

68 # oooooocoososososssssoos

69 # Recorremos el perimetro exterior en orden

70 # var vertices_borde = PackedVector2Array ([

71 # vo, vl, v2, v3, v4, v5, v6, v7, v8s # Cerramos volviendo a
Vo

72 # 1)

73

74 var vertices_borde = PackedVector2Array ([

75 vl, v2, # Lado derecho tronco

76 v2, v3, # Lado derecho rama derecha

77 # Saltamos 3-4 (punta derecha)

78 v4, v5, # Lado izquierdo rama derecha (interior V)
79 v5, v6, # Lado derecho rama izquierda (interior V)
80 # Saltamos 6-7 (punta izquierda)

81 v7, v8, # Lado izquierdo rama izquierda

82 v8, v0 # Lado izquierdo tronco

83 # Saltamos 0-1 (baset)

Informaética Grafica Ismael Sallami Moreno

1.4 SESION 5 73

84 1

86 # Usamos la funcidén del autoload (genera LINE SIN STRIP ya que
este los conecta todos)

87 var malla_borde = FuncionesAuxiliaresT5.
_crear_malla_lineas_pares(vertices_borde)

88

89 # Instanciamos y asignamos color azul oscuro

90 var inst_borde = FuncionesAuxiliaresT5.CrearMeshInstance2D(
malla_borde, Transform2D())

91 inst_borde.modulate = Color(0.0, 0.9, 0.0)

92 n.add_child(inst_borde)

93

94 return n

Ejercicio 1.4.4

Implementa otro proyecto Godot que use la funcién del problema anterior para otra funcién,
Arbol(n), que genera un arbol de escena con la figura de aqui abajo, que incluye miltiples
instancias de Tronco, situadas recursivamente unas adyacentes a otras, hasta un nivel de
recursividad dado por n.

Solucion 1.4.4. Solucién al problema 5.4:

1 # Problema 5.4:

2 # Implementa otro proyecto Godot que use la funcidn del problema
anterior

3 # para otra funcion, Arbol(n) que genera un arbol de escena con
la figura

4+ # de aqui abajo, que incluye multiples instancias de Tronco,
situadas recursi3

5 # vamente unas adyacentes a otras, hasta un nivel de
recursividad dado por n.

7 extends Node2D

9 # Configuracion del arbol
10 var niveles_recursividad : int = 7

12 func _ready():

13 # Generamos el arbol recursivo

14 var arbol = Arbol(niveles_recursividad)
15 add_child(arbol)

18/ # FUNCION RECURSIVA: Arbol(n)
19 # Crea un nodo tronco y, si n > 0, le afiade dos arboles mas

Informatica Grafica Ismael Sallami Moreno

1.4 SESION 5 74

pequefios (n-1)

20 # en las puntas, transformados geométricamente para encajar.

29

30

31

32

33

34

36

37

38

39

41

func Arbol(n: int) -> Node2D:

1. Creamos la geometria de este nivel (el tronco base)
var nodo_actual = Tronco()

2. Caso Base: Si n es 0, terminamos aqui (solo devolvemos el
tronco)

if n <= 0:
return nodo_actual

3. Caso Recursivo: Crear ramas hijas
--- RAMA IZQUIERDA ---

Debe encajar en el segmento superior izquierdo (v7 -> v6)
del padre.

var hijo_izq = Arbol(n - 1) # Recursion
hijo_izq.position = Vector2(-0.5, 3.0) # Vértice 7 del padre
hijo_izq.scale = Vector2(0.5, 0.5) # Reduce al 50%, ya que

el ancho de 6-7 es 0.5 cuando la base del hijo mide 1
hijo_izq.rotation = @ # Sin rotacion (
alineado con X)
nodo_actual.add_child(hijo_izq)

--- RAMA DERECHA ---

Debe encajar en el segmento superior derecho (v4 -> v3) del
padre.

var hijo_der = Arbol(n - 1) # Recursion

hijo_der.position = Vector2(1.5, 2.5) # Vértice 4 del padre

hijo_der.scale = Vector2(@.707, 0.707) # 1 / sqrt(2) approx,
ya que la distancia entre los vértices 3-4 es su moédulo, es
decir, la diferencia de ambos puntos al cuadrado y sumada,
luego aplicamos la raiz para saber el factor de escala

hijo_der.rotation_degrees = -45 # Rotar -45 para
encajar, ya que vamos bajando y la base es horizontal

nodo_actual.add_child(hijo_der)

return nodo_actual

GEOMETRIA DEL TRONCO (Del ejercicio 5.3, con tapas abiertas)

func Tronco() -> Node2D:

var n = Node2D.new()

Vértices (Tabla Pag. 60)
var v@ = Vector2(0.0, ©.0); var vl = Vector2(1.0, 0.0)

Informaética Grafica Ismael Sallami Moreno

1.4 SESION 5 75

58 var v2 = Vector2(1.0, 1.0); var v3 Vector2(2.0, 2.0)
59 var v4 = Vector2(1.5, 2.5); var v5 = Vector2(0.5, 1.5)
60 var v6 = Vector2(0.0, 3.0); var v7 = Vector2(-0.5, 3.0)
61 var v8 = Vector2(0.0, 1.5)

63 # --- RELLENO (Triangulos) ---

64 var vertices_relleno = PackedVector2Array ([

65 vo, v1, v2, v@, v2, v8, # Tronco

66 v8, v2, V5, # Centro

67 v2, v3, v4, v2, v4, v5, # Rama Der

68 v5, v6, v7, v5, v/, v8 # Rama Izq

69 1D

70 var m_relleno = _crear_malla_triangulos(vertices_relleno)

71 var inst_relleno = FuncionesAuxiliaresT5.CrearMeshInstance2D(

m_relleno, Transform2D())
2 inst_relleno.modulate = Color(e.7, 0.7, 1.0)
73 n.add_child(inst_relleno)

75 # --- BORDE (Lineas Discontinuas) ---
76 # NO incluimos las tapas (0-1, 3-4, 6-7) para que la recursidn
fluya visualmente

77 var vertices_borde = PackedVector2Array ([

78 vl, v2, v2, v3, # Lado derecho

79 vd, v5, v5, v6, # Interior V

80 v7, v8, v8, vO0 # Lado izquierdo

81 1

82 var m_borde = _crear_malla_segmentos(vertices_borde)

83 var inst_borde = FuncionesAuxiliaresT5.CrearMeshInstance2D(

m_borde, Transform2D())
84 inst_borde.modulate = Color (0.0, 0.0, 0.8)
85 n.add_child(inst_borde)

87 return n

90 # HELPERS LOCALES (las dejamos aqui para que a la hora de
estudiar poder tenerlas mas a mano)

92 func _crear_malla_triangulos(v: PackedVector2Array) -> ArrayMesh

93 var tablas: Array = []; tablas.resize(Mesh.ARRAY_MAX)

94 tablas[Mesh.ARRAY_VERTEX] = v

95 var am = ArrayMesh.new()

96 am.add_surface_from_arrays(Mesh.PRIMITIVE_TRIANGLES, tablas)
97 return am

90 func _crear_malla_segmentos(v: PackedVector2Array) -> ArrayMesh:
100 var tablas: Array = []; tablas.resize(Mesh.ARRAY_MAX)

Informatica Grafica Ismael Sallami Moreno

1.4 SESION 5

76

101 tablas[Mesh.ARRAY_VERTEX] = v

102 var am = ArrayMesh.new()

103 am.add_surface_from_arrays(Mesh.PRIMITIVE_LINES, tablas)
104 return am

Ejercicio 1.4.5

En un proyecto Godot 3D (puedes usar la practica 2), crea una figura como el logo de Android,

usando unicamente dos objetos ArrayMesh, uno con un cilindro y otro con una semiesfera.

Cilindro Semiesfera Android

Solucion 1.4.5. Solucién al problema 5.5:

1 # Problema 5.5:
2 # En un proyecto Godot 3D (puedes usar la practica 2) para crear
una figura
3 # como el logo de Android, usando Unicamente dos objetos
ArrayMesh, uno
4 # con un cilindro y otro con una semiesfera.

¢ extends Node3D
s # Variables para almacenar las dos Unicas mallas permitidas
9 var malla_cilindro: ArrayMesh

10 var malla_semiesfera: ArrayMesh

12 # Materiales
13 var material_verde: StandardMaterial3D

Informética Grafica

Ismael Sallami Moreno

1.4 SESION 5

77

14 var material_negro: StandardMaterial3D

16 func _ready():

17 # 1. Crear los recursos (Materiales y Mallas)
18 _crear_materiales ()

19 _generar_mallas ()

21 # 2. Construir la jerarquia (Ensamblaje)
22 construir_android ()

24 func _crear_materiales():

25 # Verde corporativo de Android

26 material_verde = StandardMaterial3D.new()

27 material_verde.albedo_color = Color(0.24, 0.86, 0
Android Green

29 # Negro para los ojos
30 material_negro = StandardMaterial3D.new()

31 material_negro.albedo_color = Color.BLACK

33 func _generar_mallas():

34 # --- Generar Cilindro ---

35 # Usamos primitivas de Godot para simplificar el
ejemplo,

36 # pero conceptualmente es un ArrayMesh generado.

37 var cilindro = CylinderMesh.new()

38 cilindro.top_radius = 0.5

39 cilindro.bottom_radius = 0.5

10 cilindro.height = 1.0

11 # Convertimos a ArrayMesh para cumplir estrictame
enunciado

42 # que pide "objetos ArrayMesh” (aunque PrimitiveM
Mesh) .

13 malla_cilindro = ArrayMesh.new()

44 malla_cilindro.add_surface_from_arrays (Mesh.
PRIMITIVE_TRIANGLES, cilindro.get_mesh_arrays())

46 # --- Generar Semiesfera ---
a7 var esfera = SphereMesh.new()
48 esfera.radius = 0.5

.35) # Aprox

cédigo del

nte el

esh hereda de

19 esfera.height = 0.5 # Hacemos que sea media esfera

50 esfera.is_hemisphere = true # Propiedad especific
semiesfera
51 malla_semiesfera = ArrayMesh.new()

malla_semiesfera.add_surface_from_arrays(Mesh.
PRIMITIVE_TRIANGLES, esfera.get_mesh_arrays())
53

54 func construir_android():

a para

Informatica Grafica

Ismael Sallami Moreno

1.4 SESION 5 78

68

69

70

81

82

83

88

89

90

91

96

97

--- CUERPO (Cilindro) ---

var cuerpo = MeshInstance3D.new()

cuerpo.mesh = malla_cilindro

cuerpo.material_override = material_verde

E1 cilindro por defecto tiene altura 1. Lo escalamos para
que sea el cuerpo.

cuerpo.scale = Vector3(1.5, 1.5, 1.5)

cuerpo.position = Vector3(e, .75, 0) # Subirlo un poco

add_child(cuerpo)

--- CABEZA (Semiesfera) ---

var cabeza = MeshInstance3D.new()

cabeza.mesh = malla_semiesfera

cabeza.material_override = material_verde

cabeza.scale = Vector3(1.5, 1.5, 1.5) # Misma escala X/Z que
el cuerpo

cabeza.position = Vector3(@, 1.6, @) # Sobre el cuerpo

add_child(cabeza)

--- 0JOS (Cilindros transformados) ---

0jo Izquierdo

var ojo_izq = MeshInstance3D.new()

ojo_izqg.mesh = malla_cilindro

ojo_izqg.material_override = material_negro

Transformacidon clave: Escalar el cilindro para que parezca
un disco plano

ojo_izqg.scale = Vector3(0.1, 0.02, 0.1)

Rotarlo para que mire al frente (El cilindro esta orientado
en Y por defecto)

ojo_izg.rotation_degrees.x = 90

ojo_izg.position = Vector3(-0.25, 0.25, 0.45) # Posiciodn
relativa a la cabeza

cabeza.add_child(ojo_izq) # iHijo de la cabeza!

0jo Derecho (Instancia idéntica, distinta posiciodn)
var ojo_der = MeshInstance3D.new()

ojo_der.mesh = malla_cilindro
ojo_der.material_override = material_negro

, 0.02, 0.1)
ojo_der.rotation_degrees.x = 90
ojo_der.position = Vector3(0.25, 0.25, 0.45)
cabeza.add_child(ojo_der)

ojo_der.scale = Vector3 (0.1

--- ANTENAS (Cilindros finos) ---

var antena_izq = MeshInstance3D.new()

antena_izq.mesh = malla_cilindro
antena_izq.material_override = material_verde
antena_izq.scale = Vector3(0.05, 0.4, @0.05) # Fina y larga

Informatica Grafica Ismael Sallami Moreno

1.4 SESION 5 79

98 antena_izq.position = Vector3(-0.3, 0.4, 0)
99 antena_izqg.rotation_degrees.z = 30 # Inclinacion
100 cabeza.add_child(antena_izq)

102 var antena_der = MeshInstance3D.new()
103 antena_der.mesh = malla_cilindro
104 antena_der.material_override = material_verde

105 antena_der.scale = Vector3(0.05, 0.4, 0.05)
106 antena_der.position = Vector3(0.3, 0.4, 0)
107 antena_der.rotation_degrees.z = -30

108 cabeza.add_child(antena_der)

110 # --- EXTREMIDADES (Cilindros) ---
111 # Aqui aplicamos lo aprendido en Session 5: Reutilizaciodn

113 # Brazo Izquierdo

114 var brazo_izq = MeshInstance3D.new()
115 brazo_izq.mesh = malla_cilindro
116 brazo_izq.material_override = material_verde

117 brazo_izq.scale = Vector3(0.3, 1.0, 0.3)

118 brazo_izq.position = Vector3(-0.9, 0.6, 0) # Al lado del
cuerpo

119 add_child(brazo_izq)

121 # Brazo Derecho

122 var brazo_der = MeshInstance3D.new()
123 brazo_der .mesh = malla_cilindro
124 brazo_der.material_override = material_verde

125 brazo_der.scale = Vector3(0.3, 1.0, 0.3)
126 brazo_der.position = Vector3(0.9, 0.6, 0)
127 add_child(brazo_der)

129 # Pierna Izquierda

130 var pierna_izq = MeshInstance3D.new()
131 pierna_izqg.mesh = malla_cilindro
132 pierna_izq.material_override = material_verde

133 pierna_izq.scale = Vector3(0.3, 0.6, 0.3)

134 pierna_izqg.position = Vector3(-0.4, -0.4, @) # Debajo del
cuerpo

135 add_child(pierna_izq)

137 # Pierna Derecha

138 var pierna_der = MeshInstance3D.new()
139 pierna_der.mesh = malla_cilindro
140 pierna_der.material_override = material_verde

141 pierna_der.scale = Vector3(0.3, 0.6, 0.3)
142 pierna_der.position = Vector3(0.4, -0.4, 0)
143 add_child(pierna_der)

Informatica Grafica Ismael Sallami Moreno

1.5 SESION 6 80

1.5 Sesion 6

Escribe el cédigo GDScript para adjuntar a un nodo de tipo Camera3D, de forma que en
cada frame la cdmara apunte a un objeto mévil objetivo (por ejemplo un coche), con estos
requerimientos:

— La posicién y el vector de velocidad del objetivo (en coordenadas de mundo)
se pueden obtener con dos funciones globales, llamadas objetivo.posicion() y
objetivo.velocidad(), ambas devuelven un objeto de tipo Vectors3.

— La camara debe situarse detras del objetivo, de forma que el punto devuelto por
objetivo.posicion() se proyecte en el centro del viewport, y ademas la camara esté
situada 3 unidades en horizontal por detrds del objetivo, y 2 unidades por encima (en el
eje Y).

Solucion 1.5.1. Nuestro objetivo mévil va a ser un coche. La resolucién detallada es la siguiente:

Requerimientos Geométricos:

1) Punto de Atencién (Look At): La cimara debe apuntar al objetivo. Esto significa que
el eje —Z de la cAmara (en Godot, la cAmara “mira” hacia —Z local) debe alinearse con el
vector que va desde la cAmara hasta el objetivo. El punto p,y; se proyectara en el centro del
viewport.

2) Posicién Relativa:

— "Detras” (Horizontal): 3 unidades por detrds. "Detrds” se define en relacién con
el movimiento. Si el coche se mueve hacia adelante, "detras” es la direccién opuesta
a la velocidad. Debemos considerar solo la componente horizontal para evitar que la
cdmara se incline hacia el suelo si el coche sube una pendiente.

— ”Arriba” (Vertical): 2 unidades por encima del objetivo (eje Y global).

Fundamentacién Tedrica

Para resolver esto, utilizamos conceptos de Espacios Afines y Operaciones con Vectores
(tratados en el pdf ig-s@3.pdf):

1) Definicién de ”Atras”: El vector velocidad ¥,p; nos da la direccién del movimiento. Para
situarnos ”detras” horizontalmente:
— Tomamos ¥,,; y anulamos su componente Y (para que sea puramente horizontal):
dp, = (Ug,0,0,).
— Normalizamos este vector para obtener una direccién unitaria: cfhz = cfhz / |th|
— El vector "hacia atras” es fczhz.
— El desplazamiento horizontal deseado es —3 - thZ.
2) Composicién de la Posicién de la Camara (pam):

ﬁcam = ﬁobj + (0, 2, O) -3 Czhz

Donde:
- (0,2,0): 2 unidades arriba.

Informatica Grafica Ismael Sallami Moreno

1.5 SESION 6 81

- -3 cihzz 3 unidades atras.

3) Transformacién de Vista (LookAt): Una vez tenemos peqm, Necesitamos construir la
matriz de vista. En Godot, la clase Node3D (de la cual hereda Camera3D) tiene métodos
auxiliares para esto. El método look_at(target, up) ajusta la transformacion del nodo para
que mire a target manteniendo el vector up orientado hacia arriba tanto como sea posible.

Solucion: Cédigo GDScript

1 extends Camera3D

3 # Asumimos que 'objetivo' es un singleton (AutolLoad) o una clase
global accesible.

4 # Si no fuera global, habria que obtener la referencia al nodo (
ej. get_node(''../Coche'"))

¢ func _process(delta: float):

7 # 1. Obtener datos del objetivo (en coordenadas de mundo)
8 # Segun el enunciado, existen estas funciones globales.

9 var p_obj: Vector3 = objetivo.posicion()

10 var v_obj: Vector3 = objetivo.velocidad()

12 # 2. Calcular la direccidén horizontal del movimiento

13 # Creamos un vector con la velocidad pero ignorando la
componente Y

14 var direccion_hz: Vector3 = Vector3(v_obj.x, 0.0, v_obj.z)

16 # IMPORTANTE: Si el coche esta parado (velocidad casi @), no
podemos normalizar

17 # (divisidn por cero). En un caso real, mantendriamos la U
ltima direccidn valida.

18 # Para el ejercicio, asumimos movimiento o usamos una
direccion por defecto (ej. eje 7).

19 if direccion_hz.length_squared() > 0.001:

20 direccion_hz = direccion_hz.normalized()

21 else:

22 # Fallback: si estd quieto, asumimos que ''detras'' es

el eje Z positivo (por ejemplo)
23 # O idealmente, usariamos la orientacidn del nodo
objetivo (basis.z)

24 direccion_hz = Vector3(e, 0, 1)

26 # 3. Calcular la posicidn deseada de la céamara

27 # - Situada en la posicidén del objetivo

28 # - Desplazada 2 unidades hacia ARRIBA (Eje Y global)

29 # - Desplazada 3 unidades hacia ATRAS (opuesto a la direccié

n horizontal)

Informaética Grafica Ismael Sallami Moreno

1.5 SESION 6 82

30 var nueva_posicion: Vector3 = p_obj + Vector3(e, 2, 0) - (
direccion_hz * 3.0)

32 # 4. Aplicar la posicidén a la camara

33 # Usamos global_position para asegurar que estamos en coords
de mundo

34 global_position = nueva_posicion

36 # 5. Orientar la camara (Transformacidon de Vista)

37 # Hacemos que la camara mire al punto objetivo.

38 # E1 vector ''Arriba'' (Up) suele ser el eje Y global (
Vector3.UP)

39 look_at(p_obj, Vector3.UP)

Explicacion detallada de la implementacion

1) extends Camera3D: El script hereda de la clase base de cdmaras en Godot, permitiendo
controlar la proyeccion y vista.

2) _process(delta): Usamos este método del bucle principal (MainLoop) porque el enunciado
pide que la cdmara se actualice ”en cada frame”.

3) Calculo del vector direccién:

— El enunciado especifica ”3 unidades en horizontal”. Esto es crucial. Si usaramos el
vector velocidad completo (incluyendo Y) para calcular el "atras”, y el coche subiera
una rampa muy empinada, la cAmara se meteria bajo tierra. Por eso proyectamos sobre
el plano XZ haciendo vep;.y = 0 y luego normalizamos v.normalized().

4) Posicionamiento (global_position):

— Calculamos la posicién final sumando vectores. Matematicamente: peam = Pobj +

(0,2,0) — 3 - dj..
5) Orientacién (look_at):

— Este método es fundamental en la Transformacion de Vista. Recalcula la matriz de
transformacién del nodo (transform) para que su eje —Z (visién) apunte a pyp; y su
eje Y se alinee con Vector3.UP. Esto resuelve la parte compleja de crear la matriz de

rotacién ortonormal manualmente.

Informatica Grafica Ismael Sallami Moreno

1.5 SESION 6 83

Ejercicio 1.5.2

Supongamos una escena que contiene una representacion visible del marco de coordenadas del

mundo como tres flechas (roja X, verde Y y azul Z), como ocurre en las practicas. Queremos
visualizar esa escena en pantalla, de forma que:
1) El eje Y aparezca vertical, hacia arriba, el eje X horizontal, hacia la derecha, el eje
Z horizontal, hacia la izquierda (los ejes X y Z se visualizan con la misma longitud
aparente).
2) El punto de coordenadas (0,0,5,0) (aparece como un disco de color morado en la figura)
debe aparecer en el centro del viewport.
3) El observador (foco de la proyeccién) estard a 3 unidades de distancia del punto
(0,0,5,0).
Escribe unos valores que podriamos usar para a, u y n de forma que se cumplan estos
requisitos. En la figura se observa una vista esquematica de como quedaria la figura en un
viewport cuadrado.

Y
AN
“}fwc
@ (0,0,5,0) L
7, 4 3> X . A
N Origen (0,0,0) ’ Z\VC . - > .1‘“'(:
Owce

Solucién 1.5.2. Para determinar los pardmetros de la matriz de vista (a, u, n), analizamos cada
requerimiento paso a paso:

1) Determinacién del punto de atencién (a): El enunciado establece que el punto de
coordenadas (0,0,5,0) debe aparecer en el centro del viewport. Por definicién, el punto de
atenciéon a (Look-At point) es el punto hacia el que apunta la cimara y que se proyecta en
el centro del plano de imagen.

Por lo tanto:
a=(0,0,5,0)

2) Determinacién del vector hacia arriba (u): Se requiere que el eje Y del mundo aparezca
vertical y hacia arriba en la imagen. Dado que el eje Y del mundo es (0, 1,0), la forma mas
directa de conseguir que se proyecte verticalmente es alineando el vector view-up (u) con
el eje Y del mundo (siempre que la direccién de vista no sea paralela a este eje, lo cual
verificaremos en el siguiente paso).

Por lo tanto:
u=(0,1,0)

3) Determinacién del vector normal de vista (n): El vector n define la direccién desde
el punto de atencién hacia el observador (es decir, la inversa de la direccién de la vista).
También determina la posicién del observador o.. mediante la relaciéon o.. = a + n.

Informatica Grafica Ismael Sallami Moreno

1.5 SESION 6 84

Analizamos las condiciones para n = (ng,ny,n.):
— Longitud: El observador debe estar a 3 unidades de distancia de a. Como n es el
vector que une a con el observador, su norma debe ser 3:

Inf| =3

— Orientacién Horizontal: Para que el eje Y se vea perfectamente vertical y centrado,
la cAmara debe estar a la misma altura o el vector de vision debe estar contenido en
un plano vertical que contenga al eje Y. Sin embargo, la condicién critica proviene de
los ejes X y Z.

— Orientacion de X y Z:

— El eje X debe verse horizontal hacia la derecha.
— El eje Z debe verse horizontal hacia la izquierda.
— Ambos deben tener la misma longitud aparente.
Esto implica que el observador debe situarse en una posicion simétrica respecto a los
ejes X e Z positivos (primer cuadrante del plano XZ respecto a a), de forma que la
linea de visién biseque el angulo de 90 grados entre X y Z.
Si nos situamos en la bisectriz del primer cuadrante del plano XZ, el vector de direccién
tendrd componentes X y Z iguales y positivas. El eje X (derecha) y el eje Z (adelante)
formardn ambos un angulo de 45° con el plano de proyeccion, proyectandose hacia
lados opuestos (derecha e izquierda) con la misma deformacién (longitud aparente).
Por tanto, la direccién de n debe ser (1,0,1).
Calculamos n:
1) Tomamos el vector director base: d = (1,0, 1).
2) Calculamos su norma: ||d]| = V12 + 02 + 12 = /2.

3) Normalizamos y escalamos por la distancia requerida (3 unidades):
d (1,0,1) (3 3)
n:3—_,:37: 770’7
]| V2 V2T V2
Aproximando los valores:

~ 2,1213

32
T2

Sl e

Asi, n ~ (2,12,0,2,12).

Resultado Final: Los valores que cumplen los requisitos son:

Informatica Grafica Ismael Sallami Moreno

1.5 SESION 6 85

Ejercicio 1.5.3

Repite el problema anterior 6.2, pero ahora para esta vista (ver figura). Usa una rotacién del

marco de vista entorno a uno de sus propios ejes.

Y

I?W{'

‘EJ)
=

O.'LUC
Owc

Xwc

Escribe los valores para a, u y n.

Solucion 1.5.3. Para obtener la configuracion visual mostrada en la figura, partimos de la solucién
del ejercicio 6.2 y aplicamos las transformaciones necesarias.

1) Punto de atencién (a): Al igual que en el ejercicio anterior, el punto (0,0,5,0) (disco
morado) debe aparecer en el centro del viewport. Por tanto:

a=(0,0,5,0)

2) Vector normal de vista (n): Observamos la orientacién de los ejes X y Z:

— El eje X (rojo) apunta hacia la izquierda y abajo.

— El eje Z (azul) apunta hacia la derecha y arriba.
En el ejercicio 6.2, mirdbamos desde el primer cuadrante (+X,+72), viendo el eje X a la
derecha y Z a la izquierda. Aqui la situacién horizontal se ha invertido (X a la izquierda, Z a
la derecha), lo que implica que el observador se ha movido a la posicién opuesta (”detras”
de la escena), mirando desde el cuadrante (—X, —2).
El vector de direccién base seria (—1,0,—1). Normalizando y aplicando la distancia de 3

n=3- (_1’0’_1) - 3. ;1 ;1
5 V1202 (—1)2 i (\/é’o’ \/5)

unidades:

Aproximando:
n~(-212,0,-2,12)

3) Vector hacia arriba (u): Observamos el eje Y (verde). En lugar de apuntar verticalmente

hacia arriba (como harfa con u = (0,1,0)), apunta hacia arriba a la izquierda. Esto indica
una rotacién de la cdmara (Roll) alrededor del eje de visién n.
Si usdramos upgse = (0, 1,0) desde la posicién trasera, verfamos el eje Y vertical. Para que el
eje Y se incline hacia la izquierda en la pantalla, la cAmara debe rotar en sentido horario
(CW). Una rotacién de 45 grados en sentido horario del vector up,s. alrededor del eje de
visién nos da el vector necesario.

Informatica Grafica Ismael Sallami Moreno

1.5 SESION 6 86

Calculamos u como una combinacién lineal que se incline hacia el eje Z negativo y X negativo
(para mantener la ortogonalidad con n):

u=(-1,1,1)

(Nota: Se puede normalizar a (—1/v/3,1/v/3,1/V/3)).
Verificacién rapida: n-u = (—1)(—1) + (0)(1) + (—=1)(1) = 14+0—1 = 0. Son perpendiculares.

. Coémo se calcula u exactamente?
El vector u (View-Up) indica la direccién de ”arriba” para la cdmara. El procedimiento
ordenado para deducir u = (—1,1,1) es:
1) Definir la base sin rotar:
— Nos situamos ”detrds” de la escena (lado opuesto al ejercicio 6.2), ya que el eje
X va a la izquierda y el Z a la derecha.
— Vector de vista ideal: n = (—1,0, —1).
— Vector arriba estdndar: upese = (0,1,0).
2) Calcular el vector ”Derecha”:

Derecha = upgse X n = (0,1,0) x (—=1,0,-1) = (-1,0,1)

Sabemos que Arriba x Atrds = Derecha. Para el caso de la izquierda seria el opuesto.
(n es atrds y u es arriba).
3) Aplicar la rotacién (mezclar arriba y derecha):
— Para rotar la cdmara hacia la derecha (sentido horario), sumamos el vector
arriba original y el vector derecha:

U = Upgse + Derecha = (0,1,0) + (—1,0,1) = (—1,1,1)

— Este vector tiene componente en Y (arriba), pero también en X y Z, inclinando
el 7arriba” de la caAmara hacia la derecha de la pantalla, logrando el efecto de
rotacion deseado.

Valores Finales:
a=(0,0,5,0)

u=(-1,1,1) (o normalizado =~ (—0,577,0,577,0,577))

-3 -3
n=|—,0 — | ~(-212,0,-2,12
(\/i \/i) ()

Ejercicio 1.5.4

Escribe el codigo GDScript para calcular los vectores de coordenadas o, Tec, Yee ¥ Zec qUE
definen el marco de vista a partir de los vectores de coordenadas a, u y n (todos estos vectores
de coordenadas de mundo, en objetos de tipo Vector3).

Solucién 1.5.4. Para construir el marco de referencia de vista (view reference frame) a partir de los
vectores dados, seguimos el procedimiento estandar de la transformacion de cdmara en graficos 3D:

1) Calculo del origen del marco (o..): El origen del marco de cdmara (posicién del

Informatica Grafica Ismael Sallami Moreno

1.5 SESION 6 87

observador) se obtiene sumando el punto de atencién a y el vector normal n:
Occ =a+mn

2) Célculo del eje z..: El eje z.. es la direccién de la vista (normalizada) y se obtiene
normalizando el vector n:

3) Caélculo del eje z..: El eje x.. (derecha de la cdmara) se obtiene como el producto vectorial
entre el vector hacia arriba u y el vector normal n, normalizado:
uUXn
Tec = 77— 7
[l x]|
4) Célculo del eje y..: El eje ye. (arriba de la cdmara) se obtiene como el producto vectorial
entre Zee y Tec:

Yec = Zec X Tec

El siguiente cédigo GDScript implementa estos pasos, suponiendo que a, u y n son objetos de tipo
Vector3:

1 # a, u, n: Vector3 (coordenadas de mundo)

3 # 1. Origen del marco de camara
4 var o_ec : Vector3 = a + n

6 # 2. Eje Z (direccidén de la vista, normalizado)
7 var z_ec : Vector3 = n.normalized()

9 # 3. Eje X (derecha, ortogonal a u y n, normalizado)
10 var x_ec : Vector3 = u.cross(n).normalized()

12 # 4. Eje Y (arriba, ortogonal a z_ec y x_ec)
13 var y_ec : Vector3 = z_ec.cross(x_ec)

Este procedimiento garantiza que los vectores Tec, Yee ¥ Zec forman una base ortonormal adecuada
para definir el sistema de referencia de la cAmara.

Partiendo de los vectores de coordenadas occ, Tec, Yee ¥ Zee que se calculan en el problema

anterior, escribe el cédigo que calcula explicitamente la matriz de vista, es una variable de
tipo Transform3D.

Solucién 1.5.5. Para construir la matriz de vista (View Matriz) a partir del marco de cdmara
definido por oc. (origen), Zee, Yee ¥ Zec (vectores ortonormales), seguimos el procedimiento estdndar
de graficos 3D:

1) Definicién: La matriz de vista transforma coordenadas del mundo al sistema de la cAmara.
Se compone de una rotacién (alineando los ejes del mundo con los de la cdmara) y una

Informatica Grafica Ismael Sallami Moreno

1.5 SESION 6 88

traslacién (llevando el origen de la cdmara al origen del sistema).
2) Expresién matricial:

TeeT TeelY TeeZ —(Tec ™ Occ)
V= YeeT Yecl YeeZ —(Yee * Oce)
Zee¥ ZeclY ZeeZ —(Zec * Occ)

0 0 0 1

3) Implementacién en Godot (Transform3D): En Godot, la clase Transform3D almacena la
base (rotacién) y el origen (traslacién). La base se define por columnas, por lo que debemos
transponer la matriz formada por Zec, Yec ¥ Zec como filas.

Cdédigo GDScript:

1 # Suponemos disponibles: x_ec, y_ec, z_ec, o_ec (Vector3)

3 # 1. Construir la base (rotacidén): columnas de la base son los
ejes de camara

i var R := Basis(x_ec, y_ec, z_ec)

5 var vista_basis := R.transposed()

7 # 2. Calcular la traslacidon (origen) segun la formula de la
matriz de vista

s var d_x = -x_ec.dot(o_ec)
9 var d_y = -y_ec.dot(o_ec)
10 var d_z = -z_ec.dot(o_ec)
11 var vista_origin = Vector3(d_x, d_y, d_z)

13 # 3. Construir la matriz de vista final
14 var matriz_vista = Transform3D(vista_basis, vista_origin)

16 # La funcion de Transform3D lo que es empaqueta todo en un solo
objeto, en este caso, lo que hace es crear una matriz de 4x4
a partir de una matriz de 3x3 (Basis) y un vector de traslaci
on (origin).

Explicacion: La matriz de vista es la inversa de la transformacion de la cAmara en el mundo. La
base ortonormal se transpone para invertir la rotacion, y la traslacion se obtiene proyectando el
origen del marco de cadmara sobre cada eje y cambiando el signo, lo que equivale a trasladar el
mundo al sistema de la cAmara. Usamos cross para construir el marco de referencia, y dot para
situar puntos dentro de ese marco, en este caso como lo que se busca es proyectar usamos dot.

Informatica Grafica Ismael Sallami Moreno

1.5 SESION 6 89

Ejercicio 1.5.6

En una copia independiente del codigo de précticas, modifica el nodo de la camara orbital

simple para conseguir que el fov minimo (vertical u horizontal) sea siempre de 75°. Esto
servira, por ejemplo, para ver el cubo de las practicas siempre completo independientemente
del ancho y alto de la ventana.
Para ello:
1) Anadir al script del nodo de cdmara una funcién que se ejecute siempre que se redi-
mensione la ventana (y al inicio).
2) En esa funcién, obtener el tamaiio (alto y ancho) del viewport.
3) Calcular la relacién de aspecto (ancho/alto).
4) Usar ajuste de la proyeccion en vertical si el viewport es més ancho que alto, y ajuste
en horizontal en caso contrario.

Caso B: Alto > Ancho

Caso A: Ancho > Alto
.. Mant
Mantener Altura || Fijo (75°) antener
Anchura
Fijo (75°)

Solucion 1.5.6. Para resolver este problema, debemos manipular la propiedad keep_aspect de la
clase Camera3D en Godot. Esta propiedad determina qué eje (horizontal o vertical) mantiene el
dngulo de visién (fov) fijo cuando cambia la relacién de aspecto de la ventana.

El objetivo es asegurar que el objeto siempre sea visible. Si la ventana se estrecha horizontalmente,
debemos fijar el FOV horizontal. Si se estrecha verticalmente, debemos fijar el FOV vertical.

1) Légica del algoritmo:

— Obtenemos el tamaio del viewport: w (ancho) y h (alto).

— Calculamos la relacién de aspecto r = w/h.

— Sir > 1 (formato apaisado o cuadrado): El ancho es suficiente para contener la escena
si fijamos la altura. Usamos KEEP_HEIGHT.

— Sir < 1 (formato vertical o "retrato”): El ancho es el factor limitante. Para evitar
que se recorte la escena lateralmente, debemos fijar el dngulo horizontal. Usamos
KEEP_WIDTH.

2) Implementacién en GDScript: Anadimos la funcién _actualiza_proyeccion y la conec-
tamos a la sefial size_changed del viewport raiz en la funciéon _ready.

1 extends Camera3D

, # constantes y variables de instancia

1l
N
(6]

6 const at # angulo de rot. con teclas

1
(S
(6]

7 const ar # angulo de rot. con raton

Informatica Grafica Ismael Sallami Moreno

1.5 SESION 6 90

s var bdrp := false # boton derecho del raton presionado si
/no

9 var dz = 3.0 # distancia en Z de la camara al origen

10 var dxy := Vector2(0.0, 0.0) # angulos hor. y vert.

11

12 [e

13 # actualiza la variable 'transform' de este nodo camara

15 func _actualiza_transf_vista() -> void

16 var ahr = ((45.0+float(dxy.x))*2.0*xPI1)/360.0

17 var avr = ((30.0+float(dxy.y))*2.0*xPI)/360.0

18 var tras := Transform3D().translated(Vector3(0.0,
0.0, dz))

19 var rotx := Transform3D().rotated(Vector3.RIGHT, -avr
)

20 var roty := Transform3D().rotated(Vector3.UP, ahr)

21 transform = roty*rotx*tras

22

PE]| i} S=—osoosossos

24/ # NUEVA FUNCION: Ajuste dinamico de la proyeccion (Problema
6.6)

25 func _actualiza_proyeccion() -> void:
26 # 1. Obtener tamano del viewport

27 var vp_size := get_viewport().size

28

29 # Evitamos division por cero si la ventana se minimiza
completamente

30 if vp_size.y == 0: return

31

32 # 2 y 3. Calcular relacion de aspecto (ancho / alto)

33 var aspect_ratio := float(vp_size.x) / float(vp_size.y)

34

35 # 4. Ajuste segun la forma de la ventana

36 if aspect_ratio < 1.0:

37 # Si es mas alto que ancho (Portrait), fijamos el
ancho

38 keep_aspect = Camera3D.KEEP_WIDTH

39 else:

40 # Si es mas ancho que alto (Landscape), fijamos el
alto (por defecto)
41 keep_aspect = Camera3D.KEEP_HEIGHT

43 # Aseguramos que el FOV base sea siempre 75 grados

14 fov = 75.0

17 func _ready () -> void
48 _actualiza_transf_vista()

Informatica Grafica Ismael Sallami Moreno

1.5 SESION 6 91

19

50 # Conectamos la senal de redimensionado a nuestra nueva
funcion
51 get_tree().root.size_changed.connect(

_actualiza_proyeccion)

53 # Llamamos a la funcion una vez al inicio para
configurar el estado inicial

54 _actualiza_proyeccion ()

55

56| # ————————--——---—

57 # procesa evento de entrada (sin cambios respecto al
original)

50 func _input(event : InputEvent):
60 var av : bool = true

62 if event is InputEventKey and event.pressed:

63 match event.keycode:

64 KEY_UP: dxy += Vector2(0, -at)

65 KEY_DOWN: dxy += Vector2(0, +at)

66 KEY_RIGHT: dxy += Vector2(-at, 0)

67 KEY_LEFT: dxy += Vector2(at, 0)

68 KEY_MINUS, KEY_PAGEDOWN, KEY_KP_SUBTRACT: dz x=

1.05

69 KEY_PLUS, KEY_PAGEUP, KEY_KP_ADD: dz = max(dz
/1.05, 0.1)

70 _: av = false

72 elif event is InputEventMouseButton:

73 match event.button_index:

74 MOUSE_BUTTON_RIGHT :

75 bdrp = event.pressed

76 av = false

77 MOUSE_BUTTON_WHEEL_DOWN: dz *= 1.05

78 MOUSE_BUTTON_WHEEL _UP: dz = max(dz/1.05, 0.1
)

79 _: av = false

80

81 elif event is InputEventMouseMotion and bdrp:

82 dxy += ar * Vector2(-event.relative.x, event.
relative.y)

83

84 else:

85 av = false

86

87 if av:

88 _actualiza_transf_vista()

Informatica Grafica Ismael Sallami Moreno

1.5 SESION 6 92

Para simplificar, lo que se hace es anadir esta funciéon y usarla en el _ready y cada vez que
se redimensiona la ventana:

1 # NUEVA FUNCION: Ajuste dinamico de la proyeccion (Problema
6.6)

> func _actualiza_proyeccion() -> void:

3 # 1. Obtener tamano del viewport

4 var vp_size := get_viewport().size

6 # Evitamos division por cero si la ventana se minimiza
completamente
7 if vp_size.y == 0: return

9 # 2 y 3. Calcular relacion de aspecto (ancho / alto)
10 var aspect_ratio := float(vp_size.x) / float(vp_size.y)

12 # 4. Ajuste segun la forma de la ventana

13 if aspect_ratio < 1.0:

14 # Si es mas alto que ancho (Portrait), fijamos el
ancho

15 keep_aspect = Camera3D.KEEP_WIDTH

16 else:

17 # Si es mas ancho que alto (Landscape), fijamos el
alto (por defecto)

18 keep_aspect = Camera3D.KEEP_HEIGHT

19

20 # Aseguramos que el FOV base sea siempre 75 grados
21 fov = 75.0

Ejercicio 1.5.7

Se desea calcular los pardmetros de la matriz de proyeccién perspectiva (I,7,b,t,n, f) para
visualizar una escena compuesta por un cubo de lado s.
Datos conocidos:

— El cubo tiene lado s.

— El centro del cubo estd en coordenadas del mundo ¢ = (c¢g, ¢y, ¢;).

— La cadmara (observador) se sita en 0cc = (Cz, ¢y, Cx + 5+ 2).

— La cdmara mira hacia el centro del cubo (a = ¢) y el vector arriba es (0,1,0).
Requerimientos:

— Ajustar la vista para que el objeto se vea lo més grande posible sin recortarse (zoom

mAaximo).
— Ajustar los planos de recorte near y far lo més cefiidos posible al objeto.
— Mantener la proporcién (sin deformacién) en un viewport cuadrado.

Solucion 1.5.7. Para resolver esto, imaginemos que trasladamos todo el sistema para que la cdmara
sea el centro del universo (0,0,0). Analizaremos distancias relativas desde la cdmara hasta el objeto.

Informatica Grafica Ismael Sallami Moreno

1.5 SESION 6 93

1) Paso 1: Entender la posicién relativa (Distancia D).
La cadmara y el cubo estén alineados en los ejes X e Y (tienen las mismas coordenadas ¢, ¢y).
La tnica diferencia es la profundidad (eje Z).
Calculamos la distancia D desde el ojo hasta el centro del cubo:

D=2Z,jo— Zeypo=(c2+5+2)—c, =5+2

La cdmara mira hacia el eje —Z, por lo que el cubo esta flotando delante de nosotros a una
distancia de s 4+ 2 unidades.

2) Paso 2: Calcular los planos de profundidad (n y f).
Los pardmetros n (near/cerca) y f (far/lejos) definen qué "rebanada” del mundo ve la
camara. Queremos que esta rebanada empiece justo en la cara frontal del cubo y termine
justo en la cara trasera.
Sabemos que el cubo mide s de profundidad. Por tanto, desde su centro, se extiende s/2
hacia adelante (hacia la cdmara) y s/2 hacia atrés.

— Plano Near (n): Es la distancia desde el ojo hasta la cara més cercana del cubo.

n = Distancia al centro — Mitad del cubo

n:(s+2)f§:g+2

— Plano Far (f): Es la distancia desde el ojo hasta la cara més lejana del cubo.

f = Distancia al centro + Mitad del cubo

s 3s
— N+ =249
f (s+)+2 2+

3) Paso 3: Calcular el marco de la ventana (I,r,b,t).
Estos parametros definen el tamafio del "marco de la ventana” a través del cual miramos,
situado en la distancia n.
Queremos que el objeto ocupe toda la pantalla. En perspectiva, si la cara delantera del cubo
entra justa en la ventana, la cara trasera (que estd mas lejos) se verd mas pequeiia y entrard
seguro. Por tanto, ajustamos la ventana al tamano de la cara delantera.
La cara delantera del cubo es un cuadrado de lado s. Como la cdmara esta centrada:
— La mitad del cubo va hacia la derecha y la mitad hacia la izquierda.
— La mitad va hacia arriba y la mitad hacia abajo.
Por tanto, en el plano de proyeccién (que hemos situado pegado a la cara delantera, en n):

r = mitad del ancho = g

| = —mitad del ancho = —g
: s
t = mitad de la altura = 3

b = —mitad de la altura = —g

4) Esquema Gréfico de la Solucidn:
El siguiente diagrama muestra la vista lateral (perfil). El ojo estd en el origen. El cubo (azul)
estd delimitado por los planos n y f (rojo). Las lineas discontinuas muestran el campo de

Informatica Grafica Ismael Sallami Moreno

1.5 SESION 6 94

visién.

Ojo e— J Cubo Distancia (—Z..)

1

+—n=s5/2+2—
— f=3s/242—

5) Resultado Final: Los valores calculados iinicamente en funcién de s son:

S 3s
n 2—i—7 f 2+
S S S S
"y 2 2 2

Ejercicio 1.5.8

Repetimos el problema 6.7 con los mismos requerimientos y suposiciones, pero ahora la escena
estd contenida en una esfera de radio r con centro en ¢ = (¢, ¢y, ¢;), en lugar de un cubo.
Datos y Adaptacién del Enunciado:

— Objeto: Esfera de radio 7.

— Centro: ¢ = (¢g, ¢y, C;).

— Céamara: Para mantener la equivalencia con el ejercicio anterior (donde la distancia
dependia del tamano del objeto s), sustituimos el lado del cubo s por el didmetro de la
esfera 2r.

— Posicién de la cdmara: 0. = (¢, ¢y, C2 + 27 + 2).

— Orientacién: Mira hacia ¢, vector arriba (0,1,0).

Requerimientos:
— ny f ajustados al maximo al objeto.
— Tamafo aparente méaximo sin recortar (la esfera debe entrar completa en la imagen).

— Viewport cuadrado (aspect ratio 1).

J

Solucion 1.5.8. Procederemos de forma andloga al caso del cubo, utilizando la caja englobante
(bounding box) de la esfera para asegurar que esta quede completamente dentro del volumen de
vista. Una esfera de radio r cabe perfectamente dentro de un cubo de lado s = 2r.

1) Paso 1: Anélisis de Distancias en el Eje Z.
Transformamos el centro de la esfera a coordenadas de cdmara (poniendo la cdmara en el

Informatica Grafica Ismael Sallami Moreno

1.5

SESION 6 95

2)

3)

origen). La distancia D desde el ojo hasta el centro c es la diferencia en la coordenada Z:
D:Zojo_Zcentro = (Cz+27"+2) —c,=2r+2

La esfera se extiende una distancia r (el radio) hacia adelante y hacia atrds desde su centro.
Paso 2: Calculo de los planos de recorte (ny f).
— Plano Near (n): Debe situarse justo delante del punto més cercano de la esfera.

n=D—-radio=2r+2)—r=r+2
— Plano Far (f): Debe situarse justo detrds del punto més lejano de la esfera.
f=D+radio=(2r+2)+r=3r+2

Paso 3: Calculo de la ventana de proyeccién (I,r,b,t).
Para asegurar que la esfera se vea completa y lo méds grande posible, ajustaremos el frustum
para que englobe el cuadrado frontal de la "caja imaginaria” que contiene a la esfera.
Si el plano de proyeccion estd en n, la seccion de la caja englobante en ese plano tiene una
altura y anchura igual al didmetro de la esfera (2r). Sin embargo, debido a la perspectiva,
si ajustamos la ventana para cubrir el tamafio del objeto en el plano near, garantizamos
que cualquier parte del objeto detrds de ese plano también sera visible (ya que el frustum se
ensancha).
La ”cara delantera” de nuestra caja imaginaria en z = —n tendria un tamano de 2r x 2r.
Como la camara apunta al centro:

— Ancho total = 2r = Del centro a la derecha = r.

— Alto total = 2r = Del centro hacia arriba = r.
Por tanto:

r=r (coincide con el radio)

Nota: Al usar t =1 en el plano n, estamos definiendo un frustum que pasa exactamente por
los bordes de la esfera en su punto mds cercano. Como la esfera se curva “hacia adentro”,
esto garantiza holgura y que la esfera completa sea visible.

Representacion Grafica:

El esquema muestra la esfera (azul) y cémo los planos n y f la encierran (rojo).

Informatica Grafica Ismael Sallami Moreno

1.5 SESION 6 96

——— —Zee

5) Resumen de resultados: Los pardmetros en funcién de r son:
n=r+2, f=3r+2

Tparam =T, l=—-7, t=7r, b= —r
(Donde 7param es el pardmetro right del frustum y r es el radio de la esfera).

Ejercicio 1.5.9

Repetimos el problema 6.7 (visualizacién de un cubo de lado s), con los mismos requerimientos
de optimizacién (tamafio maximo, sin recortes, n y f ajustados), pero con una diferencia
importante: El viewport (la ventana donde se dibuja la imagen) ya no es necesariamente
cuadrado. Tiene dimensiones de w pixeles de ancho y h pixeles de alto.
Datos conocidos:

— Objeto: Cubo de lado s, centrado en c.

— Camara: Posicién oc. = (¢z, ¢y, ¢, + s+ 2), mirando a c.

— Viewport: Resolucién w x h. Relacién de aspecto aspect = w/h.
Objetivo: Calcular n, f,I,7,b,t para que el cubo llene la pantalla lo maximo posible sin
perder la proporcién (sin deformarse) y sin recortarse.

Solucion 1.5.9. Este problema introduce el concepto de Relacién de Aspecto (Aspect Ratio).
Si la ventana de nuestro programa es rectangular, el volumen de vista (frustum) también debe ser
rectangular con la misma proporcién, o de lo contrario el cubo se vera estirado o aplastado.

1) Paso 1: Planos de profundidad (n y f).
La forma del viewport (rectangular o cuadrada) no afecta a la profundidad. La distancia de
la cAmara al objeto sigue siendo la misma que en el problema 6.7.
Distancia al centro: D = s + 2.
Los planos n y f dependen solo de la coordenada Z del cubo:

s
=—4+2
n 2+

Informatica Grafica Ismael Sallami Moreno

1.5 SESION 6 97

3s
= —+2
! 5 T

(Estos valores son idénticos al problema 6.7).
2) Paso 2: Relacién de Aspecto.
Definimos la relacién de aspecto del viewport como:

ancho w

alto h

Para evitar deformaciones, las dimensiones fisicas de la ventana de proyeccién (r — [y t — b)
deben mantener esta misma proporcién:
r—1 2r r

= — = — = —t =t
t—>b 2t t “ " “

(Asumiendo simetria r = =l y t = —b).
3) Paso 3: Célculo de la ventana (I,r,b,t).
La cara del cubo que debemos encuadrar es un cuadrado de lado s. Tenemos que meter
ese cuadrado de tamafio s X s dentro de un rectangulo de proporciéon w x h.
Debemos distinguir dos casos posibles para garantizar que el cubo entre entero (”tamartio
aparente mayor posible” significa ajustar a la dimensién més restrictiva).
CASO A: Viewport Apaisado o ”Landscape” (w > h)
— La ventana es mas ancha que alta.
— Si ajustamos el ancho de la ventana al ancho del cubo (2r = s), la altura de la ventana
(2t) serfa proporcionalmente menor a s, y cortarfamos el cubo por arriba y abajo.
— Solucién: El factor limitante es la altura. Debemos igualar la altura de la ventana a
la altura del cubo.

— El ancho se ajusta automdticamente para mantener la proporcién (serd mayor que s,
dejando espacio libre a los lados):

g W s W
T R 2 h
S w

Z:— = —— .« —
T

CASO B: Viewport Vertical o "Portrait” (w < h)
— La ventana es mas alta que ancha.
— Si ajustamos la altura de la ventana a la altura del cubo (2t = s), el ancho (2r) seria
menor que s, y cortariamos el cubo por los lados.
— Solucién: El factor limitante es el ancho. Debemos igualar el ancho de la ventana al
ancho del cubo.

5 s
T=_, =—c
2 2
— La altura se ajusta automdticamente (serd mayor que s, dejando espacio libre arriba y
abajo):
r h s h
t=—-—=7r. — = —.—
a w2 w
s h
b=—t=—--—
2 w

4) Resumen Gréfico de los Casos:

Informatica Grafica Ismael Sallami Moreno

1.5 SESION 6 98

Caso B: w < h (Vertical)

Ventana

Caso A: w > h (Apaisado)
Ventana
Cubo
Cubo s x s 2t =3
———
2r=s

5) Resultado General Unificado: Podemos expresar la solucién usando la funcién méximo
para cubrir ambos casos:

n=Sio o34
2
h
7":% méx(l,z;j), tzZ-méx(l,)
l=—-r, b=—t

Ejercicio 1.5.10

Alta complejidad. Posicionamiento de cdmara dado un FOV ().
Repetimos el problema 6.7 (cubo de lado s centrado en ¢), manteniendo los requerimientos de
optimizacién (viewport cuadrado, sin recortes, n méximo, f minimo).
Nueva condicion: En lugar de darnos la posicién de la camara, se nos da el angulo de
apertura vertical (Field of View) 8. Debemos calcular:
1) La coordenada Z de la posicién del observador (oe.), sabiendo que o, = ¢z y 0y = ¢y.
2) Los pardmetros de la proyeccién I, r,t,b,n, f en funcién de 8,5y c.

Solucion 1.5.10. Este problema es ”inverso” al anterior en cierto sentido. Antes fijaAbamos la distancia
y calculdbamos qué apertura necesitdbamos (implicitamente). Ahora, fijamos la apertura (el 4ngulo
de la lente) y tenemos que calcular a qué distancia ponernos para que el cubo llene la pantalla
perfectamente.

1) Paso 1: Entender la geometria del FOV (j3).
El dngulo 8 es la apertura total vertical. La mitad de ese dngulo es 5/2. En un tridngulo
rectangulo formado por la linea de visién, el plano de proyecciéon y el borde superior del

frustum:
altura del marco t

tan(3/2) = -2

distancia al marco n

Queremos que el cubo llene la pantalla. Esto ocurre cuando el "marco” de visién en el plano
més cercano (n) coincide exactamente con la cara delantera del cubo.

La cara delantera del cubo tiene altura s. Por tanto, desde el centro hacia arriba mide s/2.
Esto fija nuestro valor de ¢:

t=—
2

2) Paso 2: Calcular la distancia al plano Near (n).
Sustituimos ¢ en la ecuaciéon del FOV y despejamos n:

tan(s/2) = 2

Informatica Grafica Ismael Sallami Moreno

1.5 SESION 6 99

S s,
"= (g 2 oY)

Ahora ya sabemos cudnto espacio debe haber entre el ojo y la cara delantera del cubo (n).
3) Paso 3: Calcular la posicién de la cadmara (o,).
Sabemos dénde esté el cubo en el mundo (en c,).
— El centro del cubo esta en c,.
— La cara delantera estd en ¢, + s/2 (hacia nosotros).
— El ojo estd una distancia n mas alla de la cara delantera.

0, = Posicién cara delantera + n
s

O,Z:(cz—&—2

)+n

Sustituyendo el valor de n calculado antes:

0, =c, + g + gcot(ﬁ/Q) =c, +g <1+cot(§)>

Por tanto, la posicién del observador es:

Oec = (ca:acyvcz + g (1 + COt(g)))

4) Paso 4: Calcular el resto de parametros (f,[,7,b).
— f (Far): Es la distancia desde el ojo hasta la cara trasera. La cara trasera estd a una
distancia s (la profundidad del cubo) més lejos que la cara delantera (n).

f=n+s

f= gcot(ﬁ/2) +s

— t,b,1,7: Como el viewport es cuadrado (segtin enunciado 6.7) y queremos ajustar a la
cara delantera (s x s):

t_S

)
S
h=—=
2

S
r=—

2

S
[=-2
2

5) Esquema Gréfico:

El diagrama muestra cémo el angulo § determina la distancia n para que el frustum coincida
con la altura s/2.

Informatica Grafica Ismael Sallami Moreno

1.5 SESION 6

100

Opuesto (s/-

Q
=
o
o

—Z.. (Distancia)

6) Resumen de Férmulas:

5 B
= (1 t —
0, cz+2(+ co 2)

Scotﬂ
n=— =
2 2
f=n+s
s s
" 2’ 2

Informatica Grafica

Ismael Sallami Moreno

1.6 SESION 7 101

1.6 Sesion 7

Implementacién de Componentes Especulares (Phong y Blinn-Phong).
Escribe el codigo en GDScript para dos funciones que calculen la reflectividad debida a la
componente pseudo-especular de los modelos de iluminacién local:

1) Modelo de Phong: Evaluar la expresién fp, (Ecuacién 6).

2) Modelo de Blinn-Phong: Evaluar la expresién f, (Ecuacién 7).
Ambas funciones recibirdn como pardmetros:

— Los vectores unitarios: Normal en el punto (n,), vector hacia el observador (v) y vector

hacia la fuente de luz (;).

— El exponente de brillo e (shininess).

— El coeficiente especular ks (0 kpn/kbp)-
La funcién debe devolver un valor de tipo float que represente la intensidad de la luz reflejada
especularmente.

Figura 1.1: Esquema de vectores para Phong (r;) y Blinn-Phong (h;).

Solucion 1.6.1. A continuacién se detalla el procedimiento geométrico y la implementacién en
c6digo GDScript para ambos modelos.

1) Modelo de Sombreado de Phong (f,1)
El modelo de Phong calcula el brillo especular basandose en el angulo entre el vector de
visién v y el vector de reflexién perfecta de la luz r;.
Formulas requeridas:
— Vector de reflexién: r; = 2(n, - 1;)n, —1,.
— Condicién de luz incidente: d; = 1 si n,, - 1; > 0, de lo contrario 0.
— Intensidad: I = kpp, - (max(0,r; - v))°.
Cédigo GDScript:

1 func calcular_phong_especular(n: Vector3, v: Vector3, 1:
Vector3, e: float, k_ph: float) -> float:

2 # 1. Calcular el producto punto entre la normal y la
luz (Lambert)
var n_dot_1 : float = n.dot(l)

5 # 2. Si la luz estad detras de la superficie, no hay
especularidad

Informatica Grafica Ismael Sallami Moreno

1.6 SESION 7 102

6 if n_dot_1 <= 0.0:
7 return 0.0

9 # 3. Calcular el vector reflejado r

10 # Formula: r =2 x (n . 1) *x n -1

11 # En GDScript se puede usar reflect(), pero ojo:
reflect devuelve

12 # el vector reflejado dada la direccidén incidente y la
normal .

13 # La formula manual es mas explicita para teoria.

14 var r : Vector3 = (2.0 * n_dot_1 *x n - 1).normalized()

15

16 # 4. Calcular el factor especular (r . v)“e

17 var r_dot_v : float = max(0.0, r.dot(v))

18 var specular : float = pow(r_dot_v, e)

19

20 # 5. Devolver intensidad final ponderada por k_ph

21 return k_ph * specular

2) Modelo de Blinn-Phong (f,)
El modelo de Blinn-Phong optimiza el calculo y suaviza el resultado utilizando el vector
intermedio o halfway vector h;, que es la bisectriz entre la luz 1; y la visién v.
Formulas requeridas:
— Vector Halfway: h; = H}%\I
— Intensidad: I = ky,, - (1, - hy)°.
Cédigo GDScript:

1 func calcular_blinn_phong_especular(n: Vector3, v: Vector3,
1: Vector3, e: float, k_bp: float) -> float:
2 # 1. Calcular el producto punto N.L para descartar luz
trasera
3 var n_dot_1 : float = n.dot(l)

5 if n_dot_1 <= 0.0:
6 return 0.0

8 # 2. Calcular el vector halfway (bisectriz) h

9 # Es la suma de L y V, normalizada

10 var h : Vector3 = (1 + v).normalized()

11

12 # 3. Calcular el producto punto entre la normal y el

halfway vector
13 var n_dot_h : float = max(0.0, n.dot(h))

15 # 4. Elevar a la potencia (exponente de brillo)
16 var specular : float = pow(n_dot_h, e)

Informatica Grafica Ismael Sallami Moreno

1.6 SESION 7 103

18 # 5. Devolver resultado ponderado
19 return k_bp * specular

Nota técnica: En GDScript, la clase Vector3 asume que los vectores ya estan normalizados si el
enunciado dice "vectores unitarios”. Si no se garantiza, se deberia llamar a .normalized() sobre los
parametros de entrada antes de operar.

Ejercicio 1.6.2

Calculo de maximos de intensidad y visibilidad en una esfera.
Supongamos una esfera de radio unidad centrada en el origen.
— Se ilumina con una fuente de luz puntual en p = (0, 2,0).
— El observador esté situado en o = (2,0,0).
Determinar razonadamente el punto de la superficie donde el brillo serd maximo y si dicho
punto es visible para el observador para los siguientes casos:
1) Componente difusa (Lambertiana).
2) Componente pseudo-especular de Phong.
3) Componente pseudo-especular de Blinn-Phong.

Y

|

Figura 1.2: Diagrama de la escena en el plano XY (2 =0).

Solucion 1.6.2. Analizaremos cada caso paso a paso. Dado que tanto la luz como el observador
estdn en el plano XY (2 = 0) y la esfera estd centrada en el origen, los puntos de maximo brillo

estaran necesariamente en el circulo maximo del plano XY
Datos geométricos generales para un punto P(x,y, z) en la superficie de la esfera unitaria:

—~ Radio R =1, Centro C = (0,0,0).

— La normal en la superficie es n, = P — C = (z,y, 2).
— Vector hacia la luz: 1 = normalizar(p — P).

— Vector hacia el observador: v = normalizar(o — P).

Condicién de Visibilidad: Un punto P es visible si el d4ngulo entre la normal n,, y el vector de
visién v es menor de 90 grados, es decir, n, - v > 0.

Informatica Grafica Ismael Sallami Moreno

1.6 SESION 7 104

Analicemos el horizonte de visibilidad para el observador en (2,0,0):
Vaproz =~ (2,0,0) — (z,9,2) = (2 -z, ~y, —2)

N, Vaprow X (2,9,2) - (2 — 2, —y,—2) =2z — (2® + y* + 2?) =22 — 1

La condicion n, - v >0 = 22z —1>0 = =z > 0,5. Cualquier punto con coordenada x < 0,5
estd oculto por el horizonte de la esfera.

1) Componente Difusa (Lambertiana)
La intensidad difusa es proporcional a n,, - 1. El brillo es maximo cuando la normal apunta
directamente a la luz (n, || 1).
— Direccién desde el centro a la luz: (0,2,0) — (0,0,0) = (0,2,0).
— El punto de la superficie en esa direccién es Py r = (0,1,0).
— Visibilidad: La coordenada x de Py es 0.
— Como 0 < 0,5, el punto NO es visible. Esta en la parte superior de la esfera, pero el
observador, situado a la derecha, solo ve hasta x > 0,5.
2) Componente Pseudo-especular (Phong)
La intensidad es proporcional a (r - v)¢, donde r es el reflejo de la luz sobre la normal. El
maximo ocurre cuando r = v (reflexién perfecta). Esto implica que la normal n, debe ser la
bisectriz del angulo formado por el vector luz 1 y el vector visién v.
Debido a la simetria del problema (Luz en eje Y, Observador en eje X, distancias iguales al
origen), el punto debe estar en la bisectriz del primer cuadrante (z = y).
— Punto en la esfera a 45 grados: P.g, = (cos(45°),sin(45°),0) = (@, @, O) ~
(0,707,0,707,0).
— Comprobacién geométrica: La normal en este punto apunta a (1,1). La luz estd en
(0,2) y el ojo en (2,0). El vector normal divide simétricamente el dngulo entre la luz y
el ojo.
— Visibilidad: La coordenada z de P, es 0,707.
~ Como 0,707 > 0,5, el punto SI es visible. El brillo especular aparecers en el ”hombro”
de la esfera mirando hacia el observador.
3) Modelo de Blinn-Phong
La intensidad es proporcional a (n, - h)°, donde h (halfway vector) es la bisectriz entre 1 y v.
El maximo ocurre cuando la normal n,, coincide con h.
— Geométricamente, la condicién ”la normal coincide con la bisectriz de L y V” es idéntica
a la condicién de reflexién perfecta del modelo de Phong descrita arriba.

— Por tanto, el punto de méximo brillo es el mismo: P, = (?, g, 0).

— Visibilidad: Al ser el mismo punto, SI es visible.

Informatica Grafica Ismael Sallami Moreno

1.6 SESION 7 105

Ejercicio 1.6.3

Evaluacién de la BRDF de Microfacetas (GGX).
Escribe el cédigo en GDScript de una funcién para calcular la reflectividad debida a la BRDF

de microfacetas GGX, evaluando la expresién de fgq, (Ecuacién 10).
La funcién recibira los siguientes parametros:
— Vectores unitarios: Direccién de iluminacién (w;), direccién de vision (w,), tangente X
(t;), tangente Y (t,) y normal de la macrosuperficie (n;).
— Valores de rugosidad: oy y ay (tipo float).
La funcién debe devolver un valor de tipo float.

Macrosuperficie

. _WitW,
h = s

Figura 1.3: Geometria de microfacetas: El vector h actia como la normal de la
microfaceta (m) que refleja w; hacia w,.

Solucion 1.6.3. Para implementar la BRDF GGX completa, debemos desglosar la Ecuacién 10 en
sus tres componentes principales: la Distribucién de Normales (D), el Enmascaramiento-Sombreado
(@) y el término de Fresnel (F').

1) Célculo del Vector Halfway (h): Es la bisectriz entre el vector de luz y el de vision.
Representa la orientaciéon que debe tener una microfaceta para reflejar la luz perfectamente

hacia el observador.
W; + Wo

lwi + wo|
2) Distribucién de Normales Anisotrépica (D): Evaluamos la probabilidad de que una

microfaceta esté alineada con h. Usamos la férmula GGX anisotrépica (Ecuacién de transpa-
rencia 75):

D(h) =

oz (52 + (52002 + (- m)?)

Qg Qy

3) Enmascaramiento y Sombreado (G3): Usamos la aproximacién Height Correlated
Masking and Shadowing (Ecuacién de transparencia 77). Se define mediante una funcién

1 a2x? + a2y?

Donde z,y, z son las proyecciones del vector w sobre t,t,,n,.

auxiliar A(w):

1
T T+ A(wi) + A(w,)

Go

4) Término de Fresnel (F): Usamos la aproximacién de Schlick (Ecuacién de transparencia

Informatica Grafica Ismael Sallami Moreno

1.6 SESION 7 106

78). Aunque el enunciado no proporciona el indice de refraccién (fy), es necesario para
la ecuacién. Asumiremos un valor estdndar de 0,04 (dieléctrico comin) para completar el
calculo.

F = fo+ (1= fo)(1 - (w;-h))°

5) Combinacién Final (fz4.):

F-D- -Gy
W, - 1,)(Wo - D)

fggw = 4(

Implementacién en GDScript:

i func calcular_brdf_ggx(wi: Vector3, wo: Vector3, tx: Vector3, ty
Vector3, nx: Vector3, ax: float, ay: float) -> float:

2 # 1. Calcular el vector Halfway (h)

3 var h: Vector3 = (wi + wo).normalized()

5 # Pre-calculo de productos punto necesarios
6 var n_dot_wi = max(0.0001, nx.dot(wi)) # Evitar divisidn por
cero

7 var n_dot_wo
8 var n_dot_h

max (0.0001, nx.dot(wo))
max (0.0, nx.dot(h))
max (0.0, h.dot(wi))

9 var h_dot_wi

11 # Proyecciones para anisotropia

12 var h_dot_tx = h.dot(tx)

13 var h_dot_ty = h.dot(ty)

14

15 # 2. Calcular Distribucidén D (GGX Anisotrodpica)

16 var term_x = pow(h_dot_tx / ax, 2)

17 var term_y = pow(h_dot_ty / ay, 2)

18 var term_z = pow(n_dot_h, 2)

19

20 var denom_d = PI * ax * ay * pow(term_x + term_y + term_z,
2)

21 var D = 1.0 / max(0.0001, denom_d)

23 # 3. Calcular Geometria G2 (Height Correlated)

24 # Funcion Lambda auxiliar inline para wi

25 var wi_x = wi.dot(tx) * ax

26 var wi_y = wi.dot(ty) * ay

27 var wi_z = n_dot_wi

28 var lambda_wi = 0.5 * (-1.0 + sqrt(1.0 + (pow(wi_x, 2) + pow

(wi_y, 2)) / pow(wi_z, 2)))

30 # Funcion Lambda auxiliar inline para wo

31 var wo_x = wo.dot(tx) * ax
32 var wo_y = wo.dot(ty) * ay
33 var wo_z = n_dot_wo

Informatica Grafica Ismael Sallami Moreno

1.7 SESION 8 107

34 var lambda_wo = 0.5 * (-1.0 + sqrt(1.0 + (pow(wo_x, 2) + pow
(wo_y, 2)) / pow(wo_z, 2)))

36 var G2 = 1.0 / (1.0 + lambda_wi + lambda_wo)

37

38 # 4. Calcular Fresnel F (Aproximacioéon de Schlick)

39 var fo = 0.04 # Valor asumido para dieléctricos si no se
provee

10 var F = fo + (1.0 - fo) * pow(1.0 - h_dot_wi, 5)
42 # 5. Resultado final combinado
43 var numerador = F * D *x G2

44 var denominador = 4.0 * n_dot_wi * n_dot_wo

16 return numerador / max(0.0001, denominador)

1.7 Sesion 8

Supongamos que se desea crear una malla indexada para un cubo, de forma que deseamos
aplicar una textura que incluya las caras de un dado. Para ello disponemos de una imagen de
textura que tiene una relacion de aspecto 4:3.

1) Describe razonadamente cudntos vértices (como minimo) tendra el modelo.

2) Escribe la tabla de coordenadas de vértices, la tabla de coordenadas de textura y la
tabla de triangulos. Ten en cuenta que el cubo tiene lado unidad y su centro esta en
(0,5,0,5,0,5).

3) Dibuja un esquema de la textura en la cual cada vértice del modelo aparezca etiquetado
con su numero de vértice mas sus coordenadas de textura.

Solucion 1.7.1. La resolucién del ejercicio es la siguiente:

1) Ntumero de Vértices del Modelo
Aunque un cubo geométrico estdndar tiene 8 vértices espaciales (esquinas), en informética
grafica, un vértice en una malla indexada se define como una tupla tnica de atributos:
(z,y,z,u,v,...). Si un mismo punto geométrico (esquina del cubo) necesita tener dos
coordenadas de textura distintas (por ejemplo, en una costura donde la textura se corta), el

Informatica Grafica Ismael Sallami Moreno

1.7 SESION 8 108

vértice debe duplicarse.
Observando la distribucion de la textura en cruz proporcionada en las diapositivas, la imagen
tiene un aspect ratio 4:3, lo que implica una rejilla de 4 x 3 caras. La disposicién es:
— Fila superior: Cara 5.
— Fila media: Caras 6, 3, 1, 4.
— Fila inferior: Cara 2.
Para calcular el nimero minimo de vértices, analizamos la conectividad en el espacio UV:
— Si tratamos cada cara como un cuadrado independiente, tendriamos 6 x 4 = 24 vértices.
— Restamos los vértices que se comparten en las aristas continuas en la textura (donde
no hay corte UV). Las conexiones visuales son: 6-3, 3-1, 1-4, 5-1 y 1-2.
— Hay 5 aristas compartidas. Cada arista fusiona 2 pares de vértices.
— Total vértices = 24 — (5 aristas x 2 vértices) = 14.
Por tanto, el modelo necesita 14 vértices tnicos.

2) Tablas de Definicién del Modelo

Asumimos el sistema de referencia donde la cara 1 es el Frontal (z = 1), la cara 5 es Arriba
(y = 1), la cara 2 es Abajo (y = 0), la cara 3 es Izquierda (z = 0), la cara 4 es Derecha
(x =1) y la cara 6 es Atrds (z = 0). El cubo va de (0,0,0) a (1,1,1).
Dividimos el dominio de textura u € [0, 1],v € [0, 1] segtin la rejilla 4x32:

— Paso en u: 1/4 = 0,25. Columnas: 0,0,25,0,5,0,75,1,0.

— Paso en v: 1/3 & 0,333. Filas: 0, 0,33, 0,66, 1,0.
Nota: Las divisiones que se hacen de u y v corresponden a cada vértice, de manera que tan
solo tenemos que imaginar que la textura es como una tabla, si vemos en la cara 5 (arriba)
esta entre u=0.5 a u=0.75 y v=0.66 a v=1.0. En la tabla se hace referencia a top-esquina, lo
que se conoce como top-left en inglés, por ende, debemos debemos de tener en cuenta que la
coordenada v=1.0 es la parte superior de la textura y v=0.0 es la parte inferior. Se le debe
de atribuir u=0.5 y v=1.0 a la esquina superior izquierda de la cara 5 (arriba).

Tabla de Vértices (Geometria + Textura)

Ordenamos los vértices recorriendo la textura de arriba a abajo y de izquierda a dere-
cha.

2Es en base al enunciado.

Informatica Grafica Ismael Sallami Moreno

1.7 SESION 8 109
Indice (i) | Posicién (z,y,2) | Coord. Textura (u,v) Descripcién (UV)
0 (0,1,0) (0,50, 1,00) Top-Esq Cara 5
1 (1,1,0) (0,75,1,00) Top-Der Cara 5
2 (1,1,0) (0,00, 0,66) Top-Esq Cara 6
3 (0,1,0) (0,25, 0,66) Top-Der 6 / Top-Esq 3
4 (0,1,1) (0,50, 0,66) Top-Der 3 / Top-Esq 1 / Bot-Esq 5
5 (1,1,1) (0,75,0,66) Top-Der 1 / Top-Esq 4 / Bot-Der 5
6 (1,1,0) (1,00, 0,66) Top-Der 4
7 (1,0,0) (0,00, 0,33) Bot-Esq Cara 6
8 (0,0,0) (0,25,0,33) Bot-Der 6 / Bot-Esq 3
9 (0,0,1) (0,50, 0,33) Bot-Der 3 / Bot-Esq 1 / Top-Esq 2
10 (1,0,1) (0,75,0,33) Bot-Der 1 / Bot-Esq 4 / Top-Der 2
11 (1,0,0) (1,00,0,33) Bot-Der 4
12 (0,0,0) (0,50, 0,00) Bot-Esq Cara 2
13 (1,0,0) (0,75,0,00) Bot-Der Cara 2

Tabla de Triangulos

Definimos dos tridngulos por cara (sentido antihorario visto desde fuera).

Cara (Dado) | Triangulo 1 (v,,vp,v.) | Tridngulo 2 (v,, v, v4)
5 (Arriba) (0,1,4) (1,5,4)
6 (Atras) (2,3,7) (3,8,7)
3 (Izq) (3,4,8) (4,9,8)
1 (Frente) (4,5,9) (5,10,9)
4 (Der) (5,6,10) (6,11,10)
2 (Abajo) (9,10, 12) (10,13, 12)

Nota: Usamos orden horario.

3) Esquema de

la Textura

A continuacién se muestra el espacio de coordenadas de textura (u,v) con los vértices

etiquetados segin la tabla anterior.

Informatica Grafica

Ismael Sallami Moreno

1.7

SESION 8

110

v
voU1
1
v2 v3V4 V5V6
0.66
A Q 1 yi|
A J 1 3
0.33
0} v vovia]| w11
0

0

025 052475

1

El c6digo GDScript para definir las tablas de vértices, coordenadas de textura y tridngulos es el

siguiente:

1 # Definiciodon de los vértices:

2

var

var

vertices =

Vector3 (o,
Vector3 (1,
Vector3 (1,
Vector3(o,
Vector3 (o,
Vector3 (1,
Vector3 (1,
Vector3 (1,
Vector3 (o,
Vector3(o,
Vector3 (1,
Vector3 (1,
Vector3 (o,
Vector3 (1,

uvs = [

Vector2 (0.
Vector2 (0.
Vector2 (0.
Vector2 (0.
Vector2 (0.
Vector2 (0.
Vector2 (1
Vector2 (0.
Vector2 (0.
Vector2 (0.
Vector2 (0.
Vector2 (1
Vector2 (0.
Vector2 (0.

’
’
’
’
)
’
’

’

’
’
’
’

L
1
1
1
1
1
1
1
0
o,
0
0
0
0
0

’

50,
75,
00,
25,
50,
75,

.00,

00,
25,
50,
75,

.00,

50,
75,

0),
o),
0),
9),
D,
D,
o),
2),
o),
1,
1,
o),
o),
o),

S © © © © © O OO 0O 0000 = =

.00),
.00),
.66),
.66),
.66),
.66),
.66),
.33),
.33),
.33),
.33),
.33),
.00),
.00),

HOoH O O HF OH OH O O OH OH OB O H

Vo
vi
v2
v3
v4
v5
V6
v7
v8
v9
v10
vii1
v12
v13

HF OHE OHF O OH OHF OF ¥ ¥ OH OH OH OHF H

posicion y coordenadas de textura

Vo

V2
v3
v4
v5
V6
v7
v8
v9
v10
vi1i
vi2
v13

Informatica Grafica

Ismael Sallami Moreno

1.7 SESION 8 111

36 # Definicidén de los triangulos (indices de vértices) en orden
horario (sentido antihorario visto desde fuera)

7 var triangles = [
38 # Cara 5 (Arriba)
39 o, 1, 4,
40 , 5, 4,

Cara 6 (Atras)
v 3,7,
, 8, 7,

41

1
#
2
3
Cara 3 (Izquierda)
3, 4, 8,
4, 9, 8,
a7 # Cara 1 (Frente)
4, 5, 9,
5, 10, 9,
Cara 4 (Derecha)
5, 6, 10,
6, 11, 10,
Cara 2 (Abajo)
9, 10, 12,
10, 13, 12,

Ejercicio 1.7.2

Considera de nuevo el cubo y la textura del problema anterior (un cubo de lado unidad con
centro en (0,5,0,5,0,5) y una textura de imagen con relacién de aspecto 4:3 que despliega
las caras de un dado). Supén que ahora queremos visualizar el cubo iluminado, para lo cual
debemos asignar normales a los vértices.

Responde a estas cuestiones:

1) Describe razonadamente si seria posible usar la misma tabla de vértices y la misma
tabla de coordenadas de textura que en el problema anterior (donde se buscaba el
nimero minimo de vértices), o si es necesario usar tablas distintas.

2) Si has respondido que no es posible usar las mismas tablas, escribe la nueva tabla de
vértices, la nueva tabla de coordenadas de textura y la tabla de normales.

Solucion 1.7.2. La resolucién del ejercicio es la siguiente:
1. Analisis de la reutilizacién de la tabla de vértices

Para responder a esta cuestién, debemos entender qué define un vértice en el contexto del cauce
grafico (pipeline) cuando aplicamos iluminacién.

En el problema anterior (8.1), buscdbamos minimizar el espacio geométrico. Un cubo tiene geomé-
tricamente 8 esquinas. Si solo nos importara la posicién (x,y, z), podriamos definir solo 8 vértices y

reutilizarlos mediante indices.

Sin embargo, para la iluminacién (sombreado), necesitamos asociar un vector normal (77) a cada
vértice. El vector normal indica hacia dénde ”"mira” la superficie en ese punto para calcular cémo
rebota la luz.

Informatica Grafica Ismael Sallami Moreno

1.7 SESION 8 112

— El problema de la continuidad: En una esfera suave, la normal en un vértice es el promedio
de las caras adyacentes, permitiendo un sombreado suave (Gouraud).
— El caso del cubo (aristas vivas): Un cubo tiene aristas afiladas (no suaves). Consideremos
una esquina del cubo, por ejemplo, la superior-derecha-frontal (1,1, 1).
— Para la cara Frontal, la normal debe apuntar hacia adelante: @ = (0,0, 1).
— Para la cara Superior, la normal debe apuntar hacia arriba: @ = (0,1, 0).
— Para la cara Derecha, la normal debe apuntar a la derecha: @7 = (1,0, 0).

Como un vértice en la memoria de la GPU es una estructura de datos tinica que contiene
{Posicién, Normal, UV}, no podemos tener un solo vértice con tres normales distintas simul-

taneamente.

Tiop(0,1,0)
A

”) #'I”i,gh,t(la 0,7 0) L.
Vértice compartido geométricamente

ﬁfront 07 07 1)

Conclusién: No es posible usar la misma tabla reducida de 8 vértices. Es necesario duplicar los
vértices en las costuras de las aristas. Necesitaremos vértices independientes para cada cara del
cubo.

Total de vértices necesarios: 6 caras x 4 vértices/cara = 24 vértices.

2. Definicién de las nuevas tablas

Para construir las tablas, asumiremos la disposicién de textura ”en cruz” tipica para una relacién
de aspecto 4:3, tal como sugiere el enunciado del Problema 8.1.

Esquema de la Textura (Relacién 4:3): Dividimos la textura en una cuadricula de 4 x 3.

— Ancho de celda (u): 1/4 = 0,25
— Alto de celda (v): 1/3 ~ 0,333

Informatica Grafica Ismael Sallami Moreno

1.7 SESION 8

113

v
1.0
Arriba (T)
0.66
Izq (L) Frente (F) | Der (R) Tras (B)
0.33
Abajo (D)
°0 0.25 0.5 0.75 o Y

A continuacién, definimos las tablas. Dado que el cubo tiene lado 1 y centro en (0,5,0,5,0,5), las

coordenadas van de 0,0 a 1,0 en los ejes X, Y, Z.

Nota de notacion:

— Posicién: (z,y, z)

— Normal: (nz,ny,nz)

— Textura: (u,v)

Desglosaremos la tabla cara por cara (cada cara genera 4 vértices tinicos).

Tabla Completa de Vértices (Datos combinados)
1) Cara Frontal (Z = 1): Corresponde a la celda (u € [0,25,0,5],v € [0,33,0,66]). Normal

i = (0,0, 1).
Indice | Posicién (z,y,2) | Normal (nz,ny,nz) | Textura (u,v)
0 (0,0,1) (0,0,1) (0,25,0,33)
1 (1,0,1) (0,0,1) (0,50,0,33)
2 (1,1,1) (0,0,1) (0,50, 0,66)
3 (0,1,1) (0,0,1) (0,25, 0,66)

2) Cara Derecha (X = 1): Corresponde a la celda (u € [0,5,0,75],v € [0,33,0,66]). Normal

i = (1,0,0).
Indice | Posicién (z,y,2) | Normal (nz,ny,nz) | Textura (u,v)
4 (1,0,1) (1,0,0) (0,50, 0,33)
5 (1,0,0) (1,0,0) (0,75,0,33)
6 (1,1,0) (1,0,0) (0,75,0,66)
7 (1,1,1) (1,0,0) (0,50, 0,66)

3) Cara Trasera (Z = 0): Corresponde a la celda (u € [0,75,1,0],v € [0,33,0,66]). Normal

Informatica Grafica

Ismael Sallami Moreno

1.7 SESION 8

i = (0,0, -1).
Indice | Posicién (z,y,2) | Normal (nz,ny,nz) | Textura (u,v)
8 (1,0,0) (0,0, 1) (0,75,0,33)
9 (0,0,0) (0,0,—1) (1,00, 0,33)
10 (0,1,0) (0,0,-1) (1,00, 0,66)
11 (1,1,0) (0,0, 1) (0,75, 0,66)

4) Cara Izquierda (X = 0): Corresponde a la celda (u € [0,0,0,25],v € [0,33,0,66]). Normal

ii = (—1,0,0).
indice | Posicién (z,y,2) | Normal (nz,ny,nz) | Textura (u,v)
12 (0,0,0) (—1,0,0) (0,00,0,33)
13 (0,0,1) (—1,0,0) (0,25,0,33)
14 (0,1,1) (—1,0,0) (0,25,0,66)
15 (0,1,0) (—1,0,0) (0,00, 0,66)

5) Cara Superior (Y = 1): Corresponde a la celda superior central (v € [0,25,0,5],v €

0,66, 1,0)). Normal 7 = (0, 1,0).

indice | Posicién (z,y,z) | Normal (nz,ny,nz) | Textura (u,v)
16 (0,1,1) (0,1,0) (0,25,0,66)
17 (1,1,1) (0,1,0) (0,50, 0,66)
18 (1,1,0) (0,1,0) (0,50, 1,00)
19 (0,1,0) (0,1,0) (0,25,1,00)

6) Cara Inferior (Y = 0): Corresponde a la celda inferior central (u € [0,25,0,5],v €

[0,0,0,33]). Normal 7 = (0, —1,0).

indice | Posicién (z,y,2) | Normal (nz,ny,nz) | Textura (u,v)
20 (0,0,0) (0,-1,0) (0,25,0,00)
21 (1,0,0) (0, -1,0) (0,50, 0,00)
22 (1,0,1) (0,-1,0) (0,50, 0,33)
23 (0,0,1) (0,~1,0) (0,25,0,33)

El c6digo GDScript para definir las nuevas tablas de vértices, normales y coordenadas de textura es

el siguiente:

1 # Tabla de posiciones (24 vértices:

2> var vertices =

3 # Cara Frontal (Z=1)

6 caras x 4 vértices)

Informatica Grafica

Ismael Sallami Moreno

1.7 SESION 8

115

| Vector3(e,0,1),
(0,1,1),

Vector3(1,0,1), Vector3(1,1,1), Vector3

5 # Cara Derecha (X=1)
Vector3(1,0,0), Vector3(1,1,0), Vectors3

6 Vector3(1,0,1),
(1,1’1))

7 # Cara Trasera (Z=0)
Vector3(0,0,0), Vector3(e,1,0), Vectors3

8 Vector3(1,0,0),
(1,1,0),

9 # Cara Izquierda (X=0)
Vector3(0,0,1), Vector3(e,1,1), Vectors3

10 Vector3(0,0,0),
(0,1,0),

11 # Cara Superior

12 Vector3(e,1,1),
(0,1,0),

13 # Cara Inferior

14 Vector3(e,0,0),
(0,0,1),

17 # Tabla de normales

18 var normals = [

19 # Frontal

20 Vector3(e,0,1),
(0,0,1),

21 # Derecha

22 Vector3(1,0,0),
(1,0,0),

23 # Trasera

24 Vector3(0,0,-1),
(0,0,-1),

25 # Izquierda

26 Vector3(-1,0,0),
1,0,0),

27 # Superior

28 Vector3(e,1,0),
(0,1,0),

29 # Inferior

30 Vector3(e,-1,0),
(0,-1,0),

33 # Tabla de coordenadas de textura (UV)

34 var uvs = [
35 # Frontal (u: 0.

36 Vector2(0.25,0.33),

(Y=1

Vector3(1,1,1), Vector3(1,1,0), Vector3

(Y=0)

Vector3(1,0,0), Vector3(1,0,1), Vector3

(una por vértice,

constante por cara)

Vector3(0,0,1), Vector3(0,0,1), Vector3

Vector3(1,0,0), Vector3(1,0,0), Vector3

Vector3(e,0,-1),

Vector3(-1,0,0),

Vector3(0,0,-1), Vectors3

Vector3(-1,0,0), Vector3(-

Vector3(0,1,0), Vector3(e,1,0), Vectors3

Vector3(e,-1,0),

25-0.5, v:

Vector2(0.25,0.66),

37 # Derecha (u: 0.

38 Vector2(0.50,0.33),

5-0.75, v:

0.33-0.66)
Vector2(0.50,0.33),

0.33-0.66)
Vector2(0.75,0.33),

Vector3(0,-1,0), Vector3

Vector2(0.50,0.66),

Vector2(0.75,0.66),

Informatica Grafica

Ismael Sallami Moreno

1.7 SESION 8 116

Vector2(0.50,0.66),

39 # Trasera (u: 0.75-1.0, v: 0.33-0.66)

40 Vector2(@.75,0.33), Vector2(1.00,0.33), Vector2(1.00,0.66),
Vector2(0.75,0.66),

41 # Izquierda (u: 0.0-0.25, v: 0.33-0.66)

42 Vector2(0.00,0.33), Vector2(0.25,0.33), Vector2(0.25,0.66),
Vector2(0.00,0.66),

13 # Superior (u: 0.25-0.5, v: 0.66-1.0)

14 Vector2(0.25,0.66), Vector2(0.50,0.66), Vector2(0.50,1.00),
Vector2(0.25,1.00),

45 # Inferior (u: ©0.25-0.5, v: 0.00-0.33)

46 Vector2(0.25,0.00), Vector2(0.50,0.00), Vector2(0.50,0.33),
Vector2(0.25,0.33),

9 # Tabla de triangulos

50 var triangles = [
51 # Frontal
52 0,1,2, 0,2,3,
53 # Derecha
54 4,5,6, 4,6,7,

55 # Trasera

56 8,9,10, 8,10,11,

57 # Izquierda

58 12,13,14, 12,14,15,
59 # Superior

60 16,17,18, 16,18,19,
61 # Inferior

62 20,21,22, 20,22,23,

Ejercicio 1.7.3

111
20212
textura a partir de una dnica imagen (cuadrada) que se replicara en las 6 caras de dicho cubo.

Considera un cubo de lado unidad y con centro en (). Se quiere visualizar con una
Asume que no se va a usar iluminacién (no es necesario calcular la tabla de normales).
Escribe ahora la tabla de coordenadas de vértices y la tabla de coordenadas de textura
necesarias para renderizar este objeto correctamente.

Solucion 1.7.3. Para resolver este problema, debemos entender primero cémo funciona el mapeado
de texturas en un motor grafico (como OpenGL o el usado en Godot).

1) Analisis de la Geometria: El cubo tiene lado L = 1 y su centro es C = (0,5,0,5,0,5). Esto
implica que las coordenadas espaciales de los vértices varian desde:

Tmin = 0,0 —0,5=0, ZTmarz=0,56+0,0=1

Lo mismo aplica para y y z. Por tanto, el cubo ocupa el volumen [0, 1]3.

Informatica Grafica Ismael Sallami Moreno

1.7 SESION 8 117

2) El Problema de la Continuidad (Por qué necesitamos 24 vértices): Un cubo
geométrico tiene solo 8 esquinas (vértices fisicos). Sin embargo, nos piden replicar la imagen
completa en cada una de las 6 caras.

Imaginemos la esquina superior derecha de la cara frontal. Sus coordenadas espaciales son
(1,1,1).
— Para la Cara Frontal, esta esquina corresponde a la coordenada de textura (u,v) =
(1,1) (arriba-derecha de la imagen).
— Para la Cara Derecha, esa misma esquina espacial (1, 1,1) corresponde a (u,v) = (0,1)
(arriba-izquierda de la imagen).
— Para la Cara Superior, esa esquina corresponde a (u,v) = (1,0) (abajo-derecha de la
imagen, dependiendo de la orientacion).
En informaética gréfica, un vértice se define por la tupla tinica de sus atributos: (Posicion, UV).
Como una misma posiciéon espacial requiere distintos UVs segin la cara que estemos dibu-
jando, debemos duplicar los vértices. No podemos usar solo 8 vértices compartidos (mesh
indexada simple); necesitamos definir 4 vértices tinicos por cada una de las 6 caras.

Total de vértices = 6 caras x 4 vértices/cara = 24 vértices.

3) Esquema Visual del Mapeado: A continuacién, representamos cémo se asignan las
coordenadas (u,v) a una cara genérica para que la imagen se vea derecha (no rotada ni
espejada).

Imagen de Textura

> U
b

(0,0) (1,0

4) Tablas de Definicién del Modelo: Definiremos los vértices cara por cara. Asumiremos el
orden de vértices estdndar para formar dos tridngulos (por ejemplo: 0-1-2 y 0-2-3 para un
quad) en sentido antihorario (CCW).

Informatica Grafica Ismael Sallami Moreno

1.7 SESION 8 118

Cara ‘ Indice (4) ‘ Posicién (z,y, 2) ‘ Coord. Textura (u,v) ‘
0 (0,0,1) (0,0)
1 (1,0,1) (1,0)
2 (1,1,1) (1,1)
3 (0,1,1) (0,1)
4 (1,0,0) (0,0)
5 (0,0,0) (1,0)
6 (0,1,0) (1,1)
7 (1,1,0) (0,1)
8 (1,0,1) (0,0)
9 (1,0,0) (1,0)
10 (1,1,0) (1,1)
11 (1,1,1) (0,1)
12 (0,0,0) (0,0)
13 (0,0,1) (1,0)
14 (0,1,1) (1,1)
15 (0,1,0) (0,1)
16 0,1,1) (0,0)
17 (1,1,1) (1,0)
18 (1,1,0) (1,1)
19 (0,1,0) (0,1)
20 (0,0,0) (0,0)
21 (1,0,0) (1,0)
22 (1,0,1) (1,1)
23 (0,0,1) (0,1)

Cuadro 1.1: Tabla Combinada de Vértices y Coordenadas de Textura

Nota sobre la orientacion: En la cara trasera y las laterales, el orden de los vértices y la asignacion
de (u,v) se ha elegido para mantener la coherencia visual (que la imagen no se vea "espejada”) y el
orden de los vértices (winding order) sea consistente para el ”culling” de caras traseras.

El cédigo GDScript para definir las tablas de vértices y coordenadas de textura es el siguiente:

1 # Tabla de posiciones (24 vértices: 6 caras x 4 vértices)

> var vertices = [

3 # Frontal (z=1)

| Vector3(e,0,1), Vector3(1,0,1), Vector3(1,1,1), Vector3
(0,1,1),
Trasera (z=0)

6 Vector3(1,0,0), Vector3(0,0,0), Vector3(e,1,0), Vector3

(1,1,0),
7 # Derecha (x=1)
8 Vector3(1,0,1), Vector3(1,0,0), Vector3(1,1,0), Vector3

Informatica Grafica Ismael Sallami Moreno

1.7 SESION 8 119

(1,1y1),

9 # Izquierda (x=0)

10 Vector3(0,0,0), Vector3(0,0,1), Vector3(0,1,1), Vector3
(0,1,0),

11 # Superior (y=1)

12 Vector3(e,1,1), Vector3(1,1,1), Vector3(1,1,0), Vector3
(0,1,0),

13 # Inferior (y=0)

14 Vector3(e,0,0), Vector3(1,0,0), Vector3(1,0,1), Vectors3
(0,0,1),

17 # Tabla de coordenadas de textura (UV)

18 var uvs = [

19 # Frontal

20 Vector2(0,0), Vector2(1,0), Vector2(1,1), Vector2(o,1),
21 # Trasera

22 Vector2(0,0), Vector2(1,0), Vector2(1,1), Vector2(o,1),
23 # Derecha

24 Vector2(0,0), Vector2(1,0), Vector2(1,1), Vector2(o,1),
25 # Izquierda

26 Vector2(0,0), Vector2(1,0), Vector2(1,1), Vector2(o,1),
27 # Superior

28 Vector2(@,0), Vector2(1,0), Vector2(1,1), Vector2(o,1),
29 # Inferior

30 Vector2(0,0), Vector2(1,0), Vector2(1,1), Vector2(o,1),
1]

33y # Tabla de triangulos

34 var triangles = [
35 # Frontal
36 0,1,2, 0,2,3,
37 # Trasera
38 4,5,6, 4,6,7,
39 # Derecha

10 8,9,10, 8,10,11,

11 # Izquierda

42 12,13,14, 12,14,15,
13 # Superior

14 16,17,18, 16,18,19,
15 # Inferior

46 20,21,22, 20,22,23,

Informatica Grafica Ismael Sallami Moreno

1.8 SESION 9 120

1.8 Sesion 9

Ejercicio 1.8.1

En una aplicacién Godot cualquiera, anade cédigo al nodo raiz de forma que cada vez que se
pulse y luego se levante una tecla (por ejemplo la tecla P), se imprima en pantalla un mensaje
con el tiempo total en segundos que dicha tecla ha estado pulsada, en los casos en los que ha
permanecido pulsada al menos el tiempo de un frame.

Solucion 1.8.1. Para resolver este problema, debemos comprender cémo funciona el ciclo de vida de
un videojuego o aplicacién grafica interactiva en tiempo real. No basta con saber que una tecla ha
sido pulsada; necesitamos cuantificar la duracién temporal de ese estado.

En Godot, la funcién _process(delta) se ejecuta en cada fotograma (frame). El pardmetro delta
representa el tiempo transcurrido (en segundos) desde el fotograma anterior. Por lo tanto, la
estrategia consiste en acumular este valor delta mientras la tecla esté presionada y, en el momento
exacto en que se libera, mostrar el total acumulado.

A continuacién, se presenta el diagrama de flujo légico que seguiremos para implementar el algoritmo:

Informatica Grafica Ismael Sallami Moreno

1.8 SESION 9 121

{ _ process(delta) ’

; Tecla P’ Si
pulsada?

tiempo += delta

No

No ; Estaba pulsada

antes?

St (Soltada)

/ Imprimir tiempo /

Resetear tiempo

Implementacién paso a paso:

1) Definicién de variables de estado: Necesitamos una variable para acumular el tiempo
(tiempo_pulsado) y una variable booleana (tecla_activa) para saber si estamos en medio
de una accién de pulsacién. Esto es necesario para detectar el evento ”just released” (acaba
de ser soltada) manualmente o mediante la 1égica de estados.

2) Uso del bucle de procesamiento: Utilizaremos la funcién virtual _process(delta), que
Godot invoca continuamente.

3) Loégica de entrada (Input): Usaremos la clase Input para sondear (polling) el estado
fisico de la tecla "P’ (c6digo KEY_P).

4) Acumulacién y Reporte:

— Si la tecla estd pulsada: Sumamos delta a nuestra variable acumuladora.
— Si la tecla NO estd pulsada pero tecla_activa es verdadera: Significa que el usuario
acaba de soltar la tecla. En ese momento imprimimos el valor y reiniciamos las variables.

Cdédigo GDScript Solucion:

Informatica Grafica Ismael Sallami Moreno

1.8 SESION 9 122

1 extends Node

3 # Variable para almacenar el tiempo acumulado en segundos

5 var tiempo_acumulado: float = 0.0

7 # Bandera para controlar el estado de la tecla (si se esta
manteniendo pulsada)

9 var tecla_esta_pulsada: bool = false

11 func _process(delta: float) -> void:

12 # Verificamos si la tecla P estd siendo presionada en este frame
13 if Input.is_key_pressed(KEY_P):

14 # Marcamos que la tecla esta activa

15 tecla_esta_pulsada = true

16

17 # Acumulamos el tiempo transcurrido desde el Ultimo frame

18 tiempo_acumulado += delta

19

20 else:

21 # Si la tecla NO esta pulsada, verificamos si lo estaba en
el frame anterior

22 # Esto indica el evento ''Just Released'' (Acaba de soltarse
)

23 if tecla_esta_pulsada:

25 # Verificamos la condicidon del enunciado:

26 # ''permanecido pulsada al menos el tiempo de un frame''

27 # Si tiempo_acumulado > @, significa que al menos un
frame sumé delta.

28 if tiempo_acumulado > 0.0:

29 print(''La tecla P se mantuvo pulsada durante: '',

30 tiempo_acumulado, segundos.'"')

32 # Reiniciamos el estado para la préxima pulsaciodn
33 tiempo_acumulado = 0.0
34 tecla_esta_pulsada = false

Informaética Grafica Ismael Sallami Moreno

1.8 SESION 9 123

Ejercicio 1.8.2

Una posibilidad para hacer seleccién en mallas de tridngulos es usar calculo de intersecciones

entre un rayo (una semirrecta que pasa por el centro de un pixel) y cada uno de los tridngulos
de la malla.
Disena un algoritmo en pseudo-cédigo para el cdlculo de intersecciones entre un rayo y un
tridngulo:
— El rayo tiene como origen o extremo el punto cuyas coordenadas del mundo es la tupla
0, y como vector de direccién la tupla d (la suponemos normalizada).
— Las coordenadas del mundo de los vértices del tridngulo son vy, vy y va.
— El algoritmo debe indicar si hay interseccién o no, y, en caso de que la haya, calcular
las coordenadas del mundo del punto de interseccion.
Ten en cuenta que habra interseccion si y solo si se cumplen cada una de estas dos condiciones:
— El rayo intersecta con el plano del tridngulo si y solo si existe ¢ > 0 tal que el punto
Pt = 0 + td estd en el plano. Esto equivale a que el vector p; — vy es perpendicular a la
normal del plano n (es decir, su producto escalar es nulo).
— El punto p; esté dentro del tridngulo si existen dos valores reales no negativos a y b (con
0 <a+0b<1) tales que el vector p; — vg = a(v1 — vg) + b(va — vg). A los tres valores a,
by c=1-—a—0b seles llama coordenadas baricéntricas de p; en el triangulo.

V2

Solucion 1.8.2. Para resolver el problema siguiendo estrictamente las condiciones dadas, el algoritmo
se estructura en dos fases secuenciales: encontrar el punto en el plano (Condicién 1) y validar si
dicho punto esté contenido en la regién triangular (Condicién 2).

Procedimiento detallado:

1) Célculo de la Normal del Plano: Primero, definimos los vectores directores del plano del
tridngulo basandonos en sus aristas:

€1 = V1 — Vo

€2 = V2 — Vg

La normal n se obtiene mediante el producto vectorial:
n=e Xey

2) Condicién 1: Interseccién con el Plano: Buscamos un ¢ tal que el vector desde vy hasta
el punto de impacto p; sea ortogonal a la normal. La ecuacién del plano es (p — vg) - n = 0.

Informatica Grafica Ismael Sallami Moreno

1.8 SESION 9 124

Sustituyendo la ecuacién del rayo p =0+t - d:
((o+t-d)—wvg)-n=0

(o—wvg) -n+t(d-n)=0

Despejando t:
(vg—o0)-n
d-n

Si d-n =0, el rayo es paralelo al plano (no hay interseccién). Si t < 0, el tridngulo estd

t:

detras del origen.
3) Condicién 2: Inclusién en el Tridngulo (Coordenadas Baricéntricas): Una vez
tenemos p; = o+t -d, definimos el vector w = p; — vg. Segtn el enunciado, debemos encontrar
a 'y b tales que:
w=a-e1+b-ey

Esto es un sistema de ecuaciones lineales. Para resolverlo eficientemente usando productos
escalares, multiplicamos la ecuacion por e y por es:

1) (w-e1) =ale; -e1)+bles-eq)

2) (w-e2) =aler-ez) +blea-ea)
Aplicando la regla de Cramer para despejar a y b:

(w-er)(ez - e2) — (w-es)(er - e2)
(e1-en)lez e2) = (e1 - €2)

a =

b— (e1-e1)(w-ex) — (e -ex)(w-ey)
(e1-e1)(ez-ez) — (e1 - €2)2

Finalmente, verificamos sia > 0,0 >0y a+0b< 1.

Algoritmo en Pseudo-cédigo:

1 Funcion IntersectarRayoTriangulo(o, d, vo, vl1, v2):

20 // --- Pre-computo de vectores del triangulo ---

3 Vector3 el = vl - vo

1 Vector3 e2 = v2 - vo

5 Vector3 n = ProductoCruz(el, e2) // Normal del plano

s // --- Condicion 1: Interseccion Rayo-Plano ---

10 // Calculamos el denominador (d . n)
11 float det = ProductoPunto(d, n)

13 // Si es cercano a @, el rayo es paralelo al triangulo
14 Si valor_absoluto(det) < EPSILON:
15 Retornar {Falso, Nulo}

17 // Calculamos t usando la formula derivada: t = ((v@ - o) . n) /
det

Informatica Grafica Ismael Sallami Moreno

1.8 SESION 9

125

15 Vector3 origen_a_v0 = v@ - o
ProductoPunto(origen_a_vo,

19 float

211 // Verificamos que la interseccion esta delante de la camara (t

t

> Q)
22 Si t < EPSILON:
23 Retornar {Falso, Nulo}

25 // Calculamos el punto de

26 Vector3 pt = o + (d * t)

28 [/ —--

20 // Debemos resolver:

31 Vector3 w

330 // Calculo
34 float uu
35 float uv
36 float vv
37 float wu
35 float wv

10 // Denominador del sistema (determinante)

Condicion 2:

pt - vo

de productos punto para el sistema de Cramer

ProductoPunto(el,
ProductoPunto(el,
ProductoPunto(e2,
ProductoPunto (w,
ProductoPunto (w,

interseccion en el plano

Punto dentro del triangulo ---

pt - v0 = axel

el)

e2)

e2)
el)
e2)

11 float denominador = (uu * vv) -

a3l // Si

punto)
14 Si valor_absoluto(denominador) < EPSILON:

denominador es 0,

15 Retornar {Falso, Nulo}

a7 // Calculo de coordenadas baricentricas a y b
((wu * vv) - (wv * uv)) / denominador

18 float
10 float

51 // Verificacion
520 // @ <= a,

54 Retornar {Verdadero,

55 Sino:

a
b

56 Retornar {Falso, Nulo}

el triangulo es degenerado (linea o

(Cuu * wv) - (wu * uv)) / denominador

final de limites baricentricos
0 <= b, a + b <=
53 S1 (a >= 0.0) Y (b >= 0.0) Y (a + b <=
pt}

1

(uv * uv)

Solucion 1.8.2. Otra resoluciéon alternativa y mas detallada es la que se proporciona a continuacion.

Para resolver este problema, debemos traducir la geometria 3D a una serie de pasos légicos. No

basta con aplicar férmulas; hay que entender qué significan. El proceso se divide en tres fases:

definir la pared (plano), buscar el choque y verificar si el choque estd dentro del tridngulo.

Informatica Grafica

Ismael Sallami Moreno

1.8 SESION 9 126

1. Definicién del Plano (La Pared)

Un tridngulo es plano. Para saber si un rayo choca con él, primero necesitamos saber la orientaciéon
de la pared invisible donde estd pegado el tridngulo.

— Calculamos dos vectores que bordean el triangulo desde vy:
€1 =Vi— Vo, €2=Vay—Vp
— La orientacion (el vector normal n) es perpendicular a ambos bordes:

n=e; Xe

2. El Choque (Cdlculo de t)

El rayo es una linea que empieza en o y avanza en direccién d. La férmula del impacto en el plano

es:
(vp—o0) n

t =
d-n

(Por qué t < 0 significa “detras”? Imagina que el rayo son tus pasos.

— t = 0 es donde estds parado (el origen).
— t > 0 son pasos hacia adelante (lo que ves).
— t < 0 son pasos hacia atrds (a tu espalda).

La férmula matemadtica asume una recta infinita (hacia adelante y atras). Si el célculo da t = —5,
significa que el plano esta 5 pasos a tu espalda. Como una cadmara solo "ve"hacia adelante, descartamos
cualquier ¢t < 0.

3. ;Dentro o Fuera? (Coordenadas Baricéntricas)

Sit > 0, el rayo golpea la pared en el punto p. Ahora usamos coordenadas baricéntricas (a, b) para
ver si ese punto cae dentro del dibujo del tridngulo. Es como preguntar: "; Puedo llegar al punto p
dando pasos solo a lo largo de los bordes e; y es sin salirme?".

Se resuelve el sistema p —vg =ae; +bes. Sia>0,b>0y a+b <1, estamos dentro.

Informatica Grafica Ismael Sallami Moreno

1.8 SESION 9 127

A

lgorithm 1 Interseccién Rayo-Tridangulo

1

2:

15:
16:

17:
18:
19:
20:
21:
22:
23:
24
25:
26:

: Entrada: Rayo (o, d), Tridngulo (vg, v1, va)
Salida: Bool (;Impacto?), Punto (p)
> — Fase 1: Preparar vectores —
€] < V] — Vo
€y < Vg — Vg

n< e X e > Producto Vectorial (Normal)
> — Fase 2: Interseccién con el plano —
det < d-n
if |det| < € then > ;Es el rayo paralelo al plano?
return Falso, Nulo
end if

vec_origen < vg — o
: t + (vec_origen - n)/det
: if £ <0 then > Si t es negativo, el triangulo esta detras
return Falso, Nulo
. end if
> — Fase 3: Test de inclusién (Baricéntricas) —
p<+< o+ (t-d) > Punto de impacto en el plano
W< p— Vo

> Resolvemos sistema lineal usando prod. escalares (Cramer)
UU <— €1 - €1; UV < €1 -€3; VU< €€y
WU 4= W - €1; WU W- e
D + (uu - vv) — (uv - uv)

a < ((wu - vv) — (wv - wv))/D
b+ ((uu-wv) — (uv - wu))/D
ifa>0Ab>0A(a+b<1)then

return Verdadero, p > jImpacto confirmado!
else

return Falso, Nulo > Fuera del tridngulo
end if

Informatica Grafica Ismael Sallami Moreno

1.8 SESION 9 128

Ejercicio 1.8.3

Para implementar la seleccién usando intersecciones es necesario calcular el rayo que tiene
como origen el observador y pasa por el centro del pixel donde se ha hecho click.

Escribe el pseudo-cédigo del algoritmo que calcula el rayo a partir de las coordenadas del
pixel donde se ha hecho click:

El algoritmo debe producir como salida las tuplas y (normalizado) que definen el rayo.

Tenemos una vista perspectiva, y conocemos los 6 valores usados para construir la
matriz de proyeccién (left, right, top, bottom, near, far).

También conocemos el marco de coordenadas de vista, es decir, las tuplas y con los
versores y la tupla con el punto origen (todos en coordenadas del mundo).

El viewport tiene columnas y filas de pixels.

Se ha hecho click en el pixel de coordenadas enteras e .

Plano Near (n)

Pixel (u,v)

0cc (O]

Solucion 1.8.3. El objetivo de este ejercicio es realizar el proceso inverso a la rasterizacion: en lugar

de proyectar un punto 3D a un pixel 2D, queremos proyectar un pixel 2D hacia el espacio 3D

(’7Un_p

roject”).

Para ello, debemos transformar las coordenadas del pixel desde el espacio de pantalla al espacio de

la cdmara (View Space), y finalmente rotar ese vector al espacio del mundo (World Space) usando

la base de la camara dada.

Procedimiento paso a paso:

1)

2)

Mapeo de Pixel a Plano de Imagen (View Plane): El plano de proyeccion se encuentra
a una distancia (near) de la cdmara. Los limites de este plano son en horizontal y en vertical.
Los pixels se indexan generalmente desde la esquina superior izquierda (0,0) hasta (w, filas).
Sin embargo, el sistema de coordenadas de la cdmara suele tener el eje Y apuntando hacia
arriba. Debemos tener cuidado con esta inversion.
Calculamos las coordenadas fisicas (u,v) en el plano near correspondientes al centro del
pixel:

— Sumamos 0,5 a z, y Yy, para apuntar al centro del pixel, no a su esquina.

— Interpolamos linealmente:

u:l+(r—l)~%0’5
yp +0,5

Nota: Asumimos que y, = 0 es la parte superior (top) y y, = filas es la inferior
(bottom), por eso restamos en v.
Construcciéon del Vector en Espacio de Camara: En el sistema de referencia local de

Informatica Grafica Ismael Sallami Moreno

1.8

SESION 9 129

la cAmara:
— El origen del rayo es (0,0,0).
— El rayo atraviesa el plano near en (u,v, —n). (Recordemos que en OpenGL/Godot la
cdmara mira hacia —Z2).
— El vector direccién local es Jgocal = (u,v, —n).
3) Transformacién al Espacio del Mundo: Ahora usamos la base de la cdmara dada
(mec, Yecs zec) para orientar este vector en el mundo.

-

dmundo =U-Tec TV Yec+ (_n) * Zec

El origen del rayo o es simplemente la posicién de la cimara o..
4) Normalizacién: Finalmente, normalizamos el vector direccién resultante.

Algoritmo en Pseudo-cédigo:

1

Funcion CalcularRayoDesdePixel (xp, yp, w, filas, 1, r, b, t, n,
o_ec, Xx_ec, y_ec, z_ec):

// 1. Calcular coordenadas normalizadas del centro del pixel
(0.0 a 1.0)

// Sumamos ©.5 para tomar el centro exacto del pixel

float ratio_x = (xp + 0.5) / w

float ratio_y = (yp + ©0.5) / filas

// 2. Mapear al tamafo fisico del plano near (View Plane)

// Coordenada u (horizontal): interpolar entre left (1) y right
(r)

float u =1 + ((r - 1) * ratio_x)

// Coordenada v (vertical): interpolar entre top (t) y bottom (b
)

// IMPORTANTE: Asumimos que yp=0 es arriba (top) y yp=filas es
abajo (bottom)

// Por tanto, a mayor yp, nos acercamos mas a 'b' y nos alejamos
de 't'

5 float v = t - ((t - b) * ratio_y)

// 3. Construir el vector de direccion en coordenadas del mundo

// El1 vector en espacio camara es (u, v, -n)

// Lo transformamos multiplicando por los versores de la base de
la camara

// d = u*Right + v*Up + (-n)*Back

Vector3 direccion_no_norm = (x_ec * u) + (y_ec * v) - (z_ec * n)

// 4. Normalizar la direccion

5 Vector3 d = Normalizar(direccion_no_norm)

Informatica Grafica Ismael Sallami Moreno

1.9 SesionN 10 130

271 // 5. E1 origen del rayo es la posicion de la camara (proyeccion
perspectiva)
28 Vector3 o = o_ec

50 Retornar {o, d}

1.9 Sesion 10

Supongamos que un rayo (una semirrecta en 3D) tiene como origen o extremo el punto cuyas
coordenadas del mundo es la tupla o, y como vector de direccién la tupla d (la suponemos
normalizada). Ademds, sabemos que un disco de radio r tiene como centro el punto de
coordenadas de mundo c y esta en el plano perpendicular al vector n.
Con estos datos de entrada, disefia un algoritmo para calcular si hay interseccion entre el rayo
y el disco.
Ten en cuenta que habra interseccion si y solo si se cumplen cada una de estas dos condiciones:
1) El rayo interseca con el plano que contiene al disco, es decir, existe ¢ > 0 tal que el punto
pr = 0+ td esté en dicho plano. Equivale a decir que el vector p; — ¢ es perpendicular a
la normal al plano n.
2) El punto p; citado arriba estd dentro del disco, es decir, su distancia a ¢ es inferior al
radio.

Solucion 1.9.1. Para resolver este problema geométrico fundamental en el trazado de rayos (ray-
tracing), se debe descomponer la situacion en dos etapas logicas secuenciales. Primero, se determina
el punto donde el rayo infinito cruza el plano matemético que contiene al disco. Segundo, se verifica
si dicho punto de cruce se encuentra dentro de los limites finitos del disco (es decir, dentro de su
radio).
1) Definicién Algebraica del Rayo y el Plano:
Un rayo se define paramétricamente como una linea que parte de un origen o y avanza en la
direccién d. Cualquier punto p(t) sobre el rayo se puede expresar como:

p(t)=o0+t-d

Donde t es un escalar real (t > 0) que representa la distancia desde el origen a lo largo del
vector direccion.

Por otro lado, un plano en el espacio 3D queda definido por un punto conocido (en este
caso, el centro del disco ¢) y un vector normal n perpendicular a la superficie. La condicién
para que un punto genérico p pertenezca al plano es que el vector formado entre el centro y
ese punto sea perpendicular a la normal. Mateméaticamente, esto implica que su producto
escalar (dot product) es cero:

(p—c)-n=0

2) Célculo del parametro de interseccién t:
Para encontrar la interseccion, se sustituye la ecuacién del rayo en la ecuacion del plano:

((o+t-d)—c)-n=0

Informatica Grafica Ismael Sallami Moreno

1.9

SESION 10 131

Aplicando la propiedad distributiva del producto escalar:
(o—c¢)-n+(t-d)-n=0

(0-n)—(c-n)+t(d-n)=0
Despejando t:
t(d-n)=(c-n)—(o-n)
t(d-n)=(c—o0)n

(c—0)n
d-n
Aqui surgen consideraciones criticas de implementacion:

t=

— Si el denominador d - n es igual a 0, significa que el rayo es perpendicular a la normal
del plano (es decir, el rayo es paralelo al plano), por lo que no hay interseccién (o el
rayo estd contenido en el plano).

— Sit <0, la interseccién ocurre ”detras” del origen del rayo, por lo que no es visible y
debe descartarse.

Calculo del punto de interseccion p;:
Una vez obtenido un ¢ vélido (¢ > 0), se calcula la coordenada exacta del punto en el espacio:

pr=o+t-d

Verificacién de pertenencia al disco:
El hecho de que p; esté en el plano no garantiza que golpee el disco. Para que haya colision,
la distancia entre el punto de interseccién p; y el centro del disco ¢ debe ser menor o igual al
radio 7.

[pe —cll <7

Computacionalmente, calcular la raiz cuadrada para el médulo de un vector es costoso. Es
preferible comparar los cuadrados de las distancias:

A continuacién, se presenta el algoritmo formal en pseudocédigo:

1

// Estructuras de datos:

// Vec3: tupla (x, y, z) con operaciones de suma, resta y

producto punto

// Rayo: origen (Vec3), direccion (Vec3)
// Disco: centro (Vec3), normal (Vec3), radio (float)

bool IntersectaDisco(Rayo ray, Disco disco, float &t_salida) {

// 1. Calcular el denominador (producto punto entre normal vy
direccion)
float denom = dot(disco.normal, ray.direccion);

Informatica Grafica Ismael Sallami Moreno

1.9 SesionN 10 132

1 // Si denom es cercano a @, el rayo es paralelo al plano

12 if (abs(denom) < 1e-6) {

13 return false;

14 }

15

16 // 2. Calcular el vector desde el origen del rayo al centro
del disco

17 Vec3 vector_origen_centro = disco.centro - ray.origen;

18

19 // 3. Calcular t

20 float t = dot(vector_origen_centro, disco.normal) / denom;

21

22 // Verificar si la interseccion esta detras de la camara

23 if (t < 0) {

24 return false;

25 }

26

27 // 4. Calcular el punto exacto de interseccion en el plano

28 Vec3 p = ray.origen + (ray.direccion * t);

30 // 5. Verificar si el punto esta dentro del radio del disco
31 Vec3 v = p - disco.centro;
32 float dist_cuadrada = dot(v, v); // |v|*2

34 if (dist_cuadrada <= (disco.radio * disco.radio)) {

35 t_salida = t; // Guardamos la distancia a la colision
36 return true; // Hay interseccion valida

37 3

38

39 return false; // Intersecta el plano, pero fuera del disco
40

41

42

13/ }

Cédigo 1.1: Algoritmo de Interseccion Rayo-Disco

Otro formato del algoritmo en pseudocddigo es el siguiente:

Informatica Grafica Ismael Sallami Moreno

1.9 SesionN 10 133

Algorithm 2 Intersecciéon Rayo-Disco

1: function INTERSECCIONRAYODISCO(o, d, ¢, n, 1)
2: denom < d-n
if |denom| < € then
return (FALSO, NULO)
end if
te e
if ¢ <0 then
return (FALSO, NULO)
9: end if
10: p—o+t-d
11: if (p—c)-(p—c) <r? then

12: return (VERDADERQO, p)
13: else

14: return (FALSO, NULO)
15: end if

16: end function

Observacion. Sabemos que € es un valor muy pequefio (por ejemplo, 10-%) para evitar divisiones
por cero numéricas.

Ejercicio 1.9.2

Disefia un algoritmo para calcular la primera interseccién entre un rayo (con origen en o y
vector d, normalizado) y una esfera de radio unidad y centro en el origen, si hay alguna.
Ten en cuenta que un punto cualquiera p estd en la esfera si y solo si el médulo de p es la
unidad, es decir, si y solo si F(p) = 0, donde F' es el campo escalar definido as:

Fp)=p-p—1

Describe como podria usarse ese mismo algoritmo para calcular la interseccién con una esfera
con centro y radio arbitrarios (este problema puede reducirse al anterior si el rayo se traslada
a un espacio de coordenadas donde la esfera tiene centro en el origen y radio unidad).

Solucion 1.9.2. Para resolver el problema de la interseccién entre un rayo y una esfera unitaria
centrada en el origen, se procede algebraicamente sustituyendo la ecuacion paramétrica del rayo en
la ecuacién implicita de la esfera. El objetivo es hallar el valor del pardmetro ¢ (distancia desde el
origen del rayo) donde ocurre el contacto.

1) Planteamiento de las ecuaciones:

Informatica Grafica Ismael Sallami Moreno

1.9

SESION 10 134

La ecuacién del rayo es:
p(t)=o0+t-d

donde t > 0.
La ecuacién implicita de la esfera unitaria centrada en el origen es:

p-p—1=0 (obien |p|*>=1)

Sustitucién:
Se sustituye p(t) en la ecuacién de la esfera:

(o0+t-d)-(o+t-d)—1=0
Expandiendo el producto escalar (propiedad distributiva):
(0-0)+2t(o-d)+t*(d-d)—1=0

Simplificacion:
Dado que el vector de direccién d estda normalizado, sabemos que d - d = 1. La ecuacién se
convierte en una ecuacién cuadrética de la forma At? + Bt + C = 0:

t? +2(0-d)t+(0-0—1)=0

Identificamos los coeficientes:
- A=1
- B=2(o-d)
- C=0-0-1
Resolucién de la ecuacién cuadratica: Observacion. Aunque la resolucion sea
trivial, se detalla
Usamos la formula general para hallar ¢:

. —B+ VB2 —4AC
o 24

Sustituyendo A =1, B=2(o-d),C=0-0—1:

—2(0-d) £+/4(0-d)2 —4(0-0—1)

t=
2

t=—(0-d)£+/(0-d)2—(0-0—1)

Interpretacién del discriminante (A):
El término dentro de la raiz es el discriminante: A = (0-d)? — (0-0—1).
— Si A < 0: El rayo no toca la esfera (pasa de largo). No hay solucién real.
— Si A = 0: El rayo es tangente a la esfera (un punto de contacto).
— Si A > 0: El rayo atraviesa la esfera (dos puntos de contacto, entrada y salida).
Se busca la primera interseccién, que corresponde al menor valor positivo de ¢. Si ambos
t son negativos, la esfera esta detras del origen del rayo.
Generalizacién para Esfera Arbitraria (Centro C, Radio R):
Para reutilizar el algoritmo de la esfera unitaria, se aplica una transformacién al rayo para

Informatica Grafica Ismael Sallami Moreno

1.9 SesionN 10

135

llevarlo al ”espacio de la esfera unitaria”.

La ecuacién de una esfera genérica es |[p — C||* = R?, que se puede reescribir como:

2
-
R

Si definimos un nuevo origen de rayo transformado o’:

O,_O—C
R

El problema se reduce a encontrar la interseccién de un rayo que parte de o’ con direccién

d contra la esfera unitaria en el origen. Si el algoritmo base devuelve un pardmetro de

interseccién tyni, la distancia real t,..,; en el mundo original sera:

treal = tunit X R

Esto se debe a que hemos escalado el espacio dividiendo por R, por lo que las distancias

calculadas estdan "comprimidas” y deben restaurarse multiplicando por R.

A continuacién, se presenta el pseudocddigo que implementa esta logica:

1 // Estructuras auxiliares

normalizada

struct Rayo { Vec3 origen; Vec3 direccion; }; // direccion

3 struct Esfera { Vec3 centro; float radio; };

5.// Algoritmo Base: Interseccion con Esfera Unitaria en (0,0,0)

6 // Retorna true si hay colision, y guarda la distancia en t_out
7 bool IntersectaEsferaUnidad(Vec3 o, Vec3 d, float &t_out) {

8 // Coeficientes de la ecuacion t*"2 + Bt + C = 0

9 // A es 1 porque d esta normalizado

10 float B = 2.0f * dot(o, d);

11 float C = dot(o, o)

13 float discriminante

1.0f;

(B x B) - (4.0f % C);

15 if (discriminante < ©.0f) return false; // No hay
interseccion

16

17 float raiz = sqrt(discriminante);

18

19 // Soluciones de la ecuacion

20 float t@ = (-B - raiz) / 2.0f; // Entrada (mas cercana)

21 float t1 = (-B + raiz) / 2.0f; // Salida (mas lejana)

23 // Verificar orden y positividad para encontrar la primera
valida

24 if (to > 0.001fF) {

25 t_out = to;

Informatica Grafica

Ismael Sallami Moreno

1.9 SesionN 10 136

40

42

return true;

}
if (t1 > 0.001f) {

t_out = t1;

return true; // El origen esta dentro de la esfera
}

return false; // Ambas intersecciones estan detras del rayo

// Algoritmo General: Reduccion al caso unitario
bool IntersectaEsferaGenerica(Rayo ray, Esfera esf, float &

t_real) {

// 1. Transformar el origen del rayo al espacio de la esfera
unitaria

// Se traslada el mundo para que el centro sea (0,0,0) y se

escala por 1/R

Vec3 o_prima = (ray.origen - esf.centro) / esf.radio;

// La direccion d no se escala para mantener la coherencia
geometrica

// del rayo, pero esto implica que el 't' resultante estara
escalado.

float t_unit;
if (IntersectaEsferaUnidad(o_prima, ray.direccion, t_unit))
{

// 2. Escalar la distancia resultante para volver al
mundo real

t_real = t_unit x esf.radio;

return true;

return false;

Cédigo 1.2: Algoritmo de Interseccion Rayo-Esfera

Informaética Grafica Ismael Sallami Moreno

1.9 SesionN 10 137

Ejercicio 1.9.3

Se pide:

Parte 1: Cilindro. Describa como se puede definir el campo escalar cuyos ceros corresponden
a los puntos de un cilindro de altura unidad y radio unidad (sin considerar las tapas). Utilizando
esa definicién, disefie un algoritmo para calcular la interseccién rayo-cilindro.

Parte 2: Cono. Describa asimismo el campo escalar y el algoritmo correspondientes a un
cono de altura unidad y radio de la base unidad (sin considerar el disco de la base).

T

Cilindro (r =1,h=1) Cono (r=1,h=1)

Solucién 1.9.3. Este problema aborda la interseccién con superficies cuddricas candnicas (cilindros y
conos) acotadas espacialmente. A diferencia de la esfera, estas superficies son infinitas por definicién
algebraica, por lo que el algoritmo debe incorporar un paso adicional de "recorte” (clipping) para
respetar la altura finita. Asumiremos, por convencion estdndar en graficos, que ambos objetos estan
alineados con el eje Y.

1) Definicién del Campo Escalar para el Cilindro:
Un cilindro infinito de radio » = 1 alineado con el eje Y cumple que, para cualquier punto
p = (x,y, z) en su superficie, la distancia horizontal al eje Y es 1.

4+ 22=1
Por lo tanto, el campo escalar F,,;(p) se define como:
Foulp)=2*+22 -1

Los ceros de este campo (Fy(p) = 0) definen la superficie del cilindro infinito. Para obtener
el cilindro de altura unidad, se anade la condicién de restriccién:

0<y<l1

2) Algoritmo de Interseccién Rayo-Cilindro:
Sea el rayo p(t) = o+t -d, donde 0 = (03,0y,0,) v d = (dg,dy,d,). Sustituimos las
coordenadas del rayo en la ecuacién implicita 22 4 22 — 1 = 0:

(0p +tdy)? + (0. +td,)2 —1=0

Expandiendo y agrupando términos por potencias de ¢, obtenemos una ecuacién cuadratica
At* + Bt 4+ C = 0:

- A=di+d2

— B =2(0.d; + 0.d)

- C=02+02-1

Informatica Grafica Ismael Sallami Moreno

1.9 SesionN 10 138

Se resuelve para t. Si existen soluciones reales tg, t1, se calcula el punto de impacto pp;; =
o + t - d. Finalmente, se descarta la interseccién si la componente y de pp;; no cumple
0<p, <1.

3) Definicién del Campo Escalar para el Cono:
Un cono infinito alineado con el eje Y, con vértice en el origen y que pasa por (1,1,0), tiene
una pendiente de 1 (radio/altura = 1/1). La relacién es que el radio horizontal v/22 + 22 es
igual a la altura y.

El campo escalar Fiopne(p) es:

Fcone(p) = LIJQ + 22 - y2

Con la restriccién de altura 0 < y < 1 (y asumiendo la hoja superior del cono, y > 0).
4) Algoritmo de Interseccién Rayo-Cono:
Sustituyendo el rayo en 22 4 22 — y2 = 0:

(0p +tdy)* + (0, +td,)* — (0o, + td,)* =0

Esto genera nuevamente coeficientes para la ecuacién cuadratica:
- A=d>+d? - dfj
— B =2(0,dy + 0,d, — 0ydy)
- C=02+0— 05
Se resuelve para t, se obtiene py;; y se verifica que 0 < p, < 1.

A continuacién, el pseudocodigo unificado para ambas estructuras:

1 // TipoObjeto: CILINDRO o CONO
2 bool IntersectaCuadrica(Rayo ray, TipoObjeto tipo, float &t_out)

{

3 float A, B, C;

| float ox = ray.origen.x, oz = ray.origen.z, oy = ray.origen.
Y

5 float dx = ray.direccion.x, dz = ray.direccion.z, dy = ray.
direccion.y;

6 if (tipo == CILINDRO) {

7 // x*2 + z*2 - 1 =0

8 A = dx*dx + dz*dz;

9 B = 2x(ox*dx + oz*dz);

10 C = ox*ox + oz*oz - 1;

11 } else { // CONO

12 // x*2 + z*2 - y*"2 =0

13 A = dx*dx + dzxdz - dy=*dy;

14 B = 2x(ox*dx + oz*dz - oyxdy);

15 C = ox*0x + 0z*0z - O0OYy*0y;

16 }

17

18 float discrim = B*B - 4xAx*C;

19 if (discrim < @) return false; // No hay interseccion con la

Informatica Grafica Ismael Sallami Moreno

1.9

SESION 10 139

38

39

40

superficie infinita

float raiz = sqrt(discrim);
float t@ = (-B - raiz) / (2*xA);
float t1 = (-B + raiz) / (2*xA);

// Buscar la interseccion mas cercana que este dentro de la
altura

float t_candidata = to;

if (t0 < 0.001) t_candidata = t1;

if (t_candidata < 0.001) return false;

// Calcular la altura del punto de impacto
float y_impacto = oy + t_candidata * dy;

// VALIDACION DE ALTURA (Clipping)
// E1 cilindro y el cono tienen altura 1 (de y=0 a y=1)
if (y_impacto >= 0.0 && y_impacto <= 1.0) {

t_out = t_candidata;

return true;

// Si t@ falla, probamos con t1 (podria ser que entramos por
arriba/abajo)
// Nota: Esto es necesario si estamos dentro del objeto o
para el ''lado lejano''
y_impacto = oy + tl1 * dy;
if (t1 > 0.001 && y_impacto >= 0.0 && y_impacto <= 1.0) {
t_out = t1;
return true;

return false;

Cédigo 1.3: Algoritmo Genérico para Cuddricas Acotadas

Informatica Grafica Ismael Sallami Moreno

1.10 SEesionN 11 140

1.10 Sesion 11

Implementar un proyecto en Godot en el cual el nodo raiz tiene un script que define dos arrays
con: una serie de n puntos pg, p1, ..., Pn—1 del plano y = 0, y una serie de instantes de tiempo
to,t1,...,tn—1 (en segundos) con ty = 0.
1) Sitta en cada uno de esos puntos un disco pequeiio visible, a modo de marcador.
2) Incluye una funcién para calcular la posicién y velocidad de la curva de Hermite que
pasa por los puntos en los instantes dados, a partir de un ¢ en [0, ¢, _1].
3) En cada punto p; el vector de velocidad v; se calcula a partir de los puntos anterior y
siguiente.
4) En el método _process(delta) del script, calcula la posicién y velocidad de la curva
en el tiempo transcurrido desde el inicio, y mueve un objeto (un coche, por ejemplo) a
esa posicion, alineado con la direccion de la curva.

Solucion 1.10.1. Se presenta a continuacién la resolucién detallada del problema, fundamentada
en la teorfa de curvas paramétricas y Splines Cibicos de Hermite expuesta en las diapositivas del
curso (paginas 63-91).

1. Fundamentos Teéricos: Interpolacién de Hermite a Trozos

Para definir una trayectoria suave que pase por una secuencia de puntos po,...,Pn—1 €n tiempos
especificos, se utiliza una curva definida a trozos. Para un instante de tiempo ¢ que se encuentra en
el intervalo [t;, t;41], la posicién se obtiene interpolando entre p; y p;+1 considerando las velocidades
(tangentes) v; y v;+1 en dichos puntos.

Se definen las siguientes variables auxiliares para el i-ésimo intervalo:

— La duracién del intervalo: s; = t;41 — ;.

— El pardmetro normalizado de tiempo: v = =%, donde 0 < u < 1.

e
La ecuacién vectorial para la posiciéon P(t) en este intervalo viene dada por la combinacién lineal
de las bases de Hermite:

P(t) = pihoo(u) + pit1ho1(u) + sivihio(u) + sivit1hii(u) (1.9)

Es crucial notar que las velocidades v se multiplican por la duracién del intervalo s; para ajustar la
magnitud de la tangente al dominio normalizado [0, 1]. Las funciones base son:

hoo(u) = 2u® — 3u® + 1
hoy(u) = —2u® + 3u?
hio(u) = u® — 2u® +u
hi(u) = u® — u?

2. Cdlculo Automdtico de Velocidades (Tangentes)

Dado que el enunciado no proporciona las velocidades explicitas, estas se calculan numéricamente
para asegurar que la curva sea suave (continuidad C*) en los puntos de unién. Se utiliza el método

Informatica Grafica Ismael Sallami Moreno

1.10 SEesionN 11 141

de diferencias finitas centradas (Catmull-Rom):

_ Pi41 — Pi—1

, para0<i<n-—1 (1.10)
tivr —ti—1

%

Para los puntos extremos (i =0 e ¢ = n — 1), se asume velocidad nula (v = 0) o se puede usar una

diferencia simple, pero el enunciado sugiere seguir el ejemplo de suavizado estandar.

3. Representacion Visual de la Trayectoria

La siguiente figura ilustra la geometria del problema: los puntos de control (rojos) definen el paso
obligado, mientras que los vectores de velocidad calculados (azules) definen la curvatura en dichos
puntos.

ps3,t3

p07t0

v1 H (1)2 - /m)

4. Implementacion en GDScript

El siguiente codigo implementa la logica completa. Se asume que este script se adjunta al nodo raiz
de la escena y que existe un nodo hijo llamado "Coche” (MeshInstance3D o similar).

Cédigo 1.4: Script de Interpolacion Hermite

1 extends Node3D

3 # Datos de entrada: Puntos de paso y sus instantes de tiempo

4 var puntos = [

5 Vector3(eo, o, 0),
6 Vector3 (4, o, 4),
7 Vector3(8, o, -2),
8 Vector3 (12, @, 5)
9]

10 var tiempos = [0.0, 2.0, 5.0, 8.0] # t0 debe ser 0.0
11

12 # Almacen de velocidades calculadas

13 var velocidades = []

14

15 # Referencia al objeto visual (el coche)

16 onready var objeto_movil = $Coche

17 var tiempo_actual = 0.0

18

Informatica Grafica Ismael Sallami Moreno

1.10 SEesionN 11 142

19 func _ready():

20 # 1. Calcular tangentes automaticamente
21 calcular_velocidades_hermite ()

22

23 # 2. Visualizar marcadores (discos)

24 crear_marcadores_visuales ()

25

26 func calcular_velocidades_hermite():

27 var n = puntos.size()

28 velocidades.resize(n)

29

30 # Velocidad @ en extremos (arranque y parada suave)

31 velocidades[@] = Vector3.ZERO

32 velocidades[n-1] = Vector3.ZERO

33

34 # Calculo para puntos intermedios: v_i = (p_next - p_prev) /
(t_next - t_prev)

35 for i in range(l, n - 1):

36 var dist_vector = puntos[i+1] - puntos[i-1]

37 var intervalo_t = tiempos[i+1] - tiempos[i-1]

38 velocidades[i] = dist_vector / intervalo_t

39

40 func crear_marcadores_visuales():

41 for p in puntos:

42 var marcador = CSGCylinder3D.new()

43 marcador.radius = 0.3

44 marcador . height = 0.1

45 marcador.material = StandardMaterial3D.new()

46 marcador .material.albedo_color = Color (1, @, @) # Rojo
47 add_child(marcador)

48 marcador.global_position = p

49
50 # Funcion principal de interpolacion
51 func obtener_posicion_velocidad(t):

52 var n = puntos.size()

53

54 # Caso limite: si t supera el tiempo final

55 if t >= tiempos[n-1]:

56 return {''pos'': puntos[n-1], ''dir'': Vector3.FORWARD}
57

58 # Buscar el intervalo [i, i+1] correspondiente al tiempo t
59 var i = 0

60 while i < n - 1 and t > tiempos[i+1]:

61 i +=1

62

63 # Datos del tramo actual

64 var p@ = puntos[i]

65 var pl = puntos[i+1]

Informatica Grafica Ismael Sallami Moreno

1.10 SEesionN 11

143

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

110

111

var
var
var
var

vo
v
t0
t1

velocidades[i]
velocidades[i+1]
tiempos[i]
tiempos[i+1]

Parametro u normalizado (@ a 1)

var
var

S

u

t1 - t0 # Duracion del intervalo
(t - to) / s

Pre-calculo de potencias de u

var
var

Funciones base de Hermite (he@, h10, hol,
= 2%u3 - 3*xu2 + 1

var
var
var
var

u2
u3

hoo
h10
ho1
h11

u * u
u2 * u

= u3 - 2%u2 + u
= -2*%u3 + 3*u2
= u3 - u2

h11)

Interpolacion de la Posicion (notese v * s para escalar la

tangente)

var

Calculo de la velocidad

pos

= h@0*pd + h10*s*v@ + h@1*pl + hllxs*xv]

respecto a t)
Derivadas de las bases respecto a u:

var dhee = 6*u2 - 6*u

var dh1@ = 3%u2 - 4xu + 1

var dh@1l = -6%*u2 + 6%u

var dh11 = 3%u2 - 2%u

v(t) = P'(u) * (du/dt) = P'(u) = (1/s)
var vel = (dh@@#*pd + dh10*xs*v@ + dho1*pl
return {''pos'': pos, ''dir'': vel}

func _process(delta):
tiempo_actual += delta

Reiniciar bucle si termina

if tiempo_actual > tiempos.back():

tiempo_actual = 0.0

Calcular estado fisico

instantanea (Derivada de P

+ dh11*s*xvl) / s

var estado = obtener_posicion_velocidad(tiempo_actual)

Aplicar transformaciones

if objeto_movil:

Informatica Grafica

Ismael Sallami Moreno

1.1

0

SESION 11 144

112

113

114

115

116

117

118

objeto_movil.global_position = estado[''pos'"']

Orientar el objeto segun el vector de velocidad (

tangente)
Se evita el error si la velocidad es muy cercana a
cero
if estado[''dir''].length_squared() > 0.001:
var objetivo_mirar = estado[''pos''] + estado[''dir’
"]

objeto_movil.look_at(objetivo_mirar, Vector3.UP)

Ezxplicacion Paso a Paso del Codigo

D

Inicializacién (_ready): Se calculan las velocidades (tangentes) en cada punto de control
usando diferencias centradas, y se crean los marcadores visuales en la escena para cada
punto.

Calculo de Velocidades: Para los puntos intermedios, la velocidad se obtiene como el
cociente entre la diferencia de posiciones y la diferencia de tiempos de los puntos anterior y
siguiente. En los extremos, se asigna velocidad cero.

Interpolacién Hermite: La funcién principal busca el intervalo de tiempo correspondiente
y normaliza el pardmetro temporal (u) al rango [0, 1]. Se aplican las bases polinémicas de
Hermite para calcular la posiciéon y la velocidad instantanea en ese tramo.

Actualizacién por Frame (_process): En cada fotograma, se incrementa el tiempo, se
calcula la posicién y direccién de la curva en ese instante, y se mueve el objeto (por ejemplo,
un coche) a esa posicién, orientdndolo segun la direccién de la curva usando look_at.

Ejercicio 1.10.2

Crea un proyecto Godot con una animacién de una esfera cuya posicién en X oscile peridédica-
mente, con estas condiciones:

1) El centro de la esfera tiene coordenada Z igual a 0, su coordenada Y es igual al radio,

2) El periodo (tiempo en volver al mismo punto viajando en la misma direccién) es una
3) La esfera se mueve siempre a velocidad constante en magnitud (es siempre s/T), v el
4) Tu animacién debe producir esa velocidad constante, incluso teniendo en cuenta que

5) Especialmente, la magnitud de la velocidad debe ser constante aunque entre dos frames

y su coordenada X varia entre —s y +s, donde s > 0 es una constante declarada en el
script.

constante T > 0 declarada en el script (con unidades de segundos).
signo depende de la direccion.
los sucesivos valores de delta pueden cambiar entre frames.

haya ocurrido un cambio de direccién en un extremo.

Solucion 1.10.2. Se aborda la resolucién de este problema mediante la programacién de un script

en GDScript, gestionando manualmente la actualizacién de la posicién en cada fotograma para

garantizar una velocidad constante y un rebote preciso en los extremos.

Informatica Grafica Ismael Sallami Moreno

1.10 SEesionN 11 145

1. Andlisis del Movimiento y Velocidad

El movimiento solicitado describe una onda triangular. La esfera oscila entre —s y +s. Un ciclo
completo (Periodo T') consiste en el recorrido:

0—+s—=0—=-5—0

La distancia total recorrida en un cicloes D = s+ s+ s+ s = 4s.

Para que este ciclo se complete exactamente en T segundos con velocidad uniforme, la magnitud de

la velocidad (v) debe ser:
_ Distancia Total 4s

_ _ s 1.11

Y Tiempo T ()
Nota técnica: El enunciado indica entre paréntesis que la velocidad es s/T. Sin embargo, matemdti-
camente, si la velocidad fuera s/T, el objeto tardaria 4T en completar el ciclo en lugar de T. En

esta solucion se prioriza el cumplimiento del Periodo T, por lo que se utilizard v = 4s/T.

2. Algoritmo de Actualizacion y Correccién de ”Overshoot”

El reto principal en sistemas de tiempo real (como el método _process de Godot) es que el tiempo
entre frames (delta) es variable. Si el objeto estd cerca de un extremo (por ejemplo, © = 4,9 y
s =5,0) y el siguiente paso es grande (0.2), la posicién tedrica serfa 5,1, excediendo el limite.

Para mantener la velocidad constante y la precision:

1) Se calcula el desplazamiento propuesto: Az = v - 4.

2) Se suma a la posicién actual.

3) Si la nueva posicién excede los limites (s 0 —s), se calcula el exceso (overshoot).

4) Se "refleja” el exceso hacia adentro del intervalo y se invierte la direccién. Esto simula que el

rebote ocurrié en el instante exacto entre los frames.

3. Implementacion en GDScript

El siguiente cédigo se debe adjuntar a un nodo en la escena (por ejemplo, un Node3D) que contenga
un hijo llamado "Esfera” (visualizacién).

Cédigo 1.5: Script de Oscilacion Triangular Controlada

1 extends Node3D

3 # Variables de configuracion (exportadas para editar en el
inspector)
1 export var s: float = 5.

E=3

Amplitud maxima (metros)

(SIS
=

5 export var T: float = 2. Periodo completo (segundos)

1
[

6 export var radio: float .5 # Radio visual de la esfera
s # Variables de estado

9 var x_actual: float = 0.0

10 var direccion: int =1 # 1: Derecha, -1: Izquierda

Informatica Grafica Ismael Sallami Moreno

1.10 SEesionN 11

146

11 var velocidad: float = 0.0 # Magnitud de la velocidad

41

Referencia al nodo visual
onready var esfera = $Esfera

func _ready():

Calculo de la velocidad necesaria para cumplir el periodo
T
Distancia total por ciclo = 4 x s

if T > 0:

velocidad = (4.0 x s) / T
else:

velocidad = 0.0

Ajuste visual inicial
if esfera:
Si es un CSGSphere3D, ajustamos el radio propiedad

if ''radius in esfera:
esfera.radius = radio
Posicion inicial

esfera.position = Vector3(@, radio, 0)

func _process(delta):

1. Calcular el paso teorico en este frame
var distancia_paso = velocidad * delta

2. Aplicar movimiento
x_actual += distancia_paso * direccion

3. Verificacion de limites y correccion de rebote

Limite derecho (+s)
if x_actual > s:

var exceso = x_actual - s
x_actual = s - exceso # Reflejar el exceso hacia atras
direccion = -1 # Invertir direccion

Limite izquierdo (-s)
elif x_actual < -s:

var exceso = -s - x_actual # Cuanto nos pasamos por la
izquierda

Xx_actual = -s + exceso # Reflejar el exceso hacia
delante

direccion = 1 # Invertir direccion

4. Actualizar la posicion del nodo visual
if esfera:
esfera.position.x = x_actual

Informatica Grafica

Ismael Sallami Moreno

1.10 SEesionN 11 147

56 esfera.position.y = radio
0.0

57 esfera.position.z

Este algoritmo asegura que la magnitud de la velocidad se mantenga constante en todo momento,
respetando la fisica del rebote perfecto sin perder tiempo ni energia en los extremos.

Ejercicio 1.10.3

Desarrolla un proyecto Godot para el ejemplo de animacion de un reloj con tres agujas. Las
condiciones especificadas en la teoria son:
1) Se desea visualizar un reloj con tres agujas: horas, minutos y segundos.
2) Cada aguja se modela como una malla de poligonos en posicién vertical (paralelo al eje
Y), con el origen en el punto del eje del reloj.
3) Se usan matrices de rotacién en torno al eje Z.
4) Los 4dngulos de rotacién dependen linealmente del tiempo ¢ (segundos transcurridos
desde el comienzo del dia).

Solucion 1.10.3. Se procede a la implementacion de un sistema de animacion jerarquica para simular
un reloj analégico funcional en tiempo real. La solucion se basa en la aplicaciéon directa de las
transformaciones de rotaciéon descritas en las diapositivas 32 a 35 del material de curso.

1. Modelo Matemdtico: Angulos y Tiempo

Segtn la teorfa, el estado de las agujas estd determinado por tres angulos 0}, 6,,,, 05 que son funciones
lineales del tiempo ¢. El tiempo ¢ representa los segundos totales transcurridos en el ciclo actual (el
ciclo de 12 horas para la aguja horaria).

Las relaciones angulares (en radianes) son:
— Segundero (6): Da una vuelta completa (27) cada 60 segundos.

_27r

0(t) = o5 -t (1.12)

— Minutero (6,,): Da una vuelta completa cada hora (602 = 3600 segundos).

2m
O (t) = —— -t 1.1
) = 3600 (1.13)
— Horario (0): Da una vuelta completa cada 12 horas (12 - 602 = 43200 segundos).
2
O(t) = 13200 -t (1.14)

Nota de implementacion: En la convencion estandar matematica y de Godot, una rotaciéon positiva
en el eje Z es antihoraria. Dado que los relojes giran en sentido horario, aplicaremos el signo negativo
a estos dngulos en el codigo (rotacién = —6).

Informatica Grafica Ismael Sallami Moreno

1.10 SEesionN 11 148

2. Estructura del Grafo de Escena

Para cumplir con el requisito de que las agujas tengan su origen en el eje de rotacién pero se
extiendan a lo largo del eje Y positivo, utilizaremos una jerarquia de nodos:

1) Nodo Raiz (Reloj): Contenedor principal.

2) Pivotes (Node3D): Tres nodos hijos situados en (0, 0,0). Estos nodos serdn los que roten.

3) Mallas (MeshInstance3D): Hijos de los pivotes. Se desplazarén verticalmente (offset)
para que su base coincida con el pivote, logrando el efecto de girar desde el extremo.

3. Implementacion en GDScript

El siguiente script crea la geometria procedimentalmente (para facilitar la prueba sin modelos
externos) y aplica la légica de rotaciéon basada en la hora del sistema.

Cédigo 1.6: Script del Reloj Analdgico

1 extends Node3D

3 # Referencias a los nodos de las agujas (Pivotes)
i var pivote_segundos: Node3D

5 var pivote_minutos: Node3D

6 var pivote_horas: Node3D

s func _ready():
9 # 1. Construccion procedimental de la escena
10 crear_geometria_reloj()

12 func crear_geometria_reloj():

13 # Creamos una esfera central como base
14 var esfera = CSGSphere3D.new()

15 esfera.radius = 0.5

16 add_child(esfera)

18 # Creamos las tres agujas.
19 # Usamos una funcion auxiliar para configurar: (Nombre,
Largo, Ancho, Color)

20 pivote_horas = crear_aguja(''Horas'', 2.0, 0.2, Color.black)

21 pivote_minutos = crear_aguja(''Minutos'', 3.0, ©0.15, Color.
darkgray)

22 pivote_segundos = crear_aguja(''Segundos'', 3.5, 0.05, Color
.red)

24 func crear_aguja(nombre, largo, ancho, color) -> Node3D:

25 # 1. E1 Pivote: Este nodo estara en (0,0,0) y es el que
rotamos

26 var pivote = Node3D.new()

27 pivote.name = ''Pivote'' + nombre

Informatica Grafica Ismael Sallami Moreno

1.10 SEesionN 11 149

N
0

add_child(pivote)
29

30 # 2. La Malla Visual: Hija del pivote

31 var mesh = CSGBox3D.new()

32 mesh.size = Vector3(ancho, largo, 0.1)

33

34 # IMPORTANTE: Desplazamos la malla hacia arriba (Y+) la

mitad de su largo.
35 # Asi, el centro de rotacion (el pivote) queda en la base de

la aguja.
36 mesh.position = Vector3(@, largo / 2.0, 0)
37
38 # Material
39 var material = StandardMaterial3D.new()
40 material.albedo_color = color
41 mesh.material = material
42
43 pivote.add_child(mesh)

44 return pivote

16 func _process(delta):

a7 # 1. Obtener el tiempo actual del sistema

48 var tiempo = Time.get_time_dict_from_system()
49 var horas = tiempo[''hour'']

50 var minutos = tiempo[''minute'']

51 var segundos = tiempo[''second'']

53 # 2. Calcular t (segundos totales desde las 12:00)
54 # Ajustamos horas a formato 12h para la formula
55 horas = horas % 12

57 # Calculo de alta precision para movimiento suave (
incluyendo milisegundos si se quisiera)

58 # t para segundos (ciclo 60s)

59 var t_sec = segundos

60 # t para minutos (ciclo 3600s). Sumamos segundos para
movimiento continuo

61 var t_min = (minutos * 60.0) + segundos

62 # t para horas (ciclo 43200s). Sumamos minutos y segundos

63 var t_hour = (horas * 3600.0) + (minutos * 60.0) + segundos

65 # 3. Calcular angulos (Theta) usando las formulas de la
teoria

66 # Theta = (2 * PI / Periodo) * t

67 # Usamos negativo para rotacion en sentido horario (
Clockwise)

69 var theta_s = -(2.0 x PI / 60.0) * t_sec

Informatica Grafica Ismael Sallami Moreno

1.10 SEesionN 11 150

70 var theta_m -(2.0 * PI / 3600.0) * t_min

-(2.0 x PI / 43200.0) * t_hour

71 var theta_h

73 # 4. Aplicar rotacion en el eje Z

74 if pivote_segundos:

75 pivote_segundos.rotation.z = theta_s
76 if pivote_minutos:

77 pivote_minutos.rotation.z = theta_m
78 if pivote_horas:

79 pivote_horas.rotation.z = theta_h

4. Andlisis del Codigo

1) Generacién de Geometria: Se sigue la especificacién de la diapositiva 35: un nodo raiz (la
esfera central) y un nodo para cada aguja. Dentro de cada aguja, se separa la transformacién
(el Pivote) de la geometria (la Malla). El desplazamiento mesh.position.y = largo / 2.0
es critico para que la rotacién ocurra en el extremo de la aguja y no en su centro geométrico.

2) Caélculo del Tiempo (t): En lugar de un acumulador simple delta, utilizamos Time.get_-
time_dict_from_system(). Esto sincroniza la animacién con la hora real. Para las agujas
de minutos y horas, se suman las fracciones correspondientes de las unidades menores (por
ejemplo, a los minutos se le suman los segundos convertidos) para lograr un movimiento
fluido y realista, en lugar de saltos discretos.

3) Aplicacién de la Rotacién: Se asignan los dngulos calculados a la propiedad rotation.z.
FEl signo negativo asegura que el giro sea en el sentido de las agujas del reloj, corrigiendo la
convencién matemética estdndar (antihoraria) del sistema de coordenadas de Godot.

Ejercicio 1.10.4

Desarrolla un proyecto Godot para el ejemplo de animacién de un péndulo. Las condiciones
tedricas especificadas son:
1) El péndulo consiste en una masa colgando de un punto fijo por una cuerda de longitud
l.
2) El 4ngulo 0 entre la cuerda y la vertical varfa con el tiempo t¢.
3) La oscilacién es periédica con un perfodo T > 0 (tiempo en segundos para completar
un ciclo).
4) El éngulo oscila entre —6,, y O,,.
5) La funcién que describe el 4ngulo es (t) = 6, - sin(2) (o una variante cosinusoidal
equivalente).

Solucion 1.10.4. Se detalla a continuacién la implementacién de un péndulo fisico simple utilizando
animacién procedimental en Godot. La solucion aplica las férmulas de oscilacion armoénica descritas
en las diapositivas 36 a 38 del material de referencia.

1. Modelo Matemadtico del Movimiento

El movimiento del péndulo se modela mediante una funciéon sinusoidal que define el dngulo de
rotacién 6(t) en el eje Z.

Informatica Grafica Ismael Sallami Moreno

1.10 SESION 11 151

Segun la teoria proporcionada:

— Se define una funcién base oscilante f(t) = sin(nt) que tiene un perfodo de 2 unidades.
— Para adaptar esta funcién a un periodo arbitrario T, se escala el tiempo: 0(t) = Oaz - f (%)

Sustituyendo la funcién base, obtenemos la férmula final para la implementacion:
2t 2t
0(t) = Omaq - sin <7r : T) = Omaz - sin (;) (1.15)

Donde:

— Omae s la amplitud méxima (en radianes).
— T es el periodo de oscilacién (en segundos).
— t es el tiempo acumulado.

2. Estructura del Grafo de Escena

Para simular correctamente el péndulo, es fundamental establecer la jerarquia de nodos adecuada,
ya que la rotacién debe ocurrir en el punto de anclaje (extremo superior) y no en el centro de masa
del péndulo.
1) Nodo Raiz (Soporte): Punto fijo en el espacio.
2) Pivote (Node3D): Hijo del soporte. Este nodo se ubica en (0,0,0) relativo al soporte y es
el que recibird la rotacién 6(t).
3) Varilla (MeshInstance3D): Hija del Pivote. Se desplaza verticalmente hacia abajo (eje Y
negativo) una distancia L/2 y se escala para tener longitud L.
4) Masa/Bob (MeshInstance3D): Hija del Pivote (o de la varilla). Se desplaza verticalmente
hacia abajo una distancia L.

3. Implementacion en GDScript

El siguiente script se debe adjuntar al nodo Pivote. Este script genera la geometria visual
procedimentalmente para facilitar la prueba y aplica la férmula de oscilacién.

Cédigo 1.7: Script del Péndulo Oscilante

1 extends Node3D

3 # Parametros fisicos configurables

1 export var theta_max_degrees: float = 45.0 # Amplitud maxima en
grados

5 export var periodo: float = 2.0 # Periodo T en
segundos

¢ export var longitud_cuerda: float = 3.0 # Longitud L

s # Variables internas
9 var tiempo_acumulado: float = 0.0
10 var theta_max_rad: float = 0.0

Informatica Grafica Ismael Sallami Moreno

1.10 SEesionN 11

152

existen)

13 var varilla: CSGBox3D

14

15

var masa: CSGSphere3D

16 func _ready():

17

Referencias a los nodos visuales (se crearan por codigo si no

Convertir grados a radianes para las funciones

trigonometricas

theta_max_rad = deg_to_rad(theta_max_degrees)

Construccion procedimental del pendulo visual

construir_geometria()

23 func construir_geometria():

30

31

32

38

39

40

41

52

1. Crear la varilla (Cuerda)
varilla = CSGBox3D.new()

varilla.size = Vector3(0.1, longitud_cuerda,

largo

@0.1) # Grosor y

IMPORTANTE: Desplazar la varilla hacia abajo la mitad de

su longitud.

Asi, el extremo superior coincide con el origen del Pivote

(0,0,0).

varilla.position = Vector3(@, -longitud_cuerda / 2.0, 0)

Material visual para la varilla

var mat_varilla = StandardMaterial3D.new()
mat_varilla.albedo_color = Color.gray
varilla.material = mat_varilla

add_child(varilla)
2. Crear la masa (Esfera en el extremo)
masa = CSGSphere3D.new()

masa.radius = 0.4

La masa se coloca al final de la cuerda

masa.position = Vector3(@, -longitud_cuerda,

Material visual para la masa

var mat_masa = StandardMaterial3D.new()
mat_masa.albedo_color = Color.red
masa.material = mat_masa

add_child(masa)

535 func _process(delta):

54

1. Acumular el tiempo

0)

Informatica Grafica

Ismael Sallami Moreno

1.10 SEesionN 11 153

55 tiempo_acumulado += delta

57 # Opcional: Evitar desbordamiento de float reseteando cada

periodo
58 if tiempo_acumulado > periodo:
59 tiempo_acumulado -= periodo
60
61 # 2. Calcular el angulo actual usando la formula armonica
62 # theta(t) = theta_max * sin(2 * PI x t / T)

63 var theta = theta_max_rad * sin((2.0 * PI x tiempo_acumulado
) / periodo)

65 # 3. Aplicar la rotacion al Pivote
66 # Se rota en el eje Z para oscilar izquierda-derecha
67 rotation.z = theta

4. Ezxplicacion del Cédigo

— Setup (_ready): Se convierten los grados a radianes, ya que las funciones matemédticas de
Godot y la propiedad rotation trabajan en radianes. Se invoca la construccion de la malla.
— Geometria (construir_geometria): Se crean primitivas CSG. El punto clave es varilla.position.y
= -longitud_cuerda / 2.0. Esto asegura que, aunque el centro geométrico del cubo esta
en su mitad, visualmente la varilla ”cuelga” del nodo padre (el Pivote en 0,0,0). La masa se
coloca en -longitud_cuerda.
— Animacién (_process):
1) Se actualiza el tiempo ¢.

2) Se calcula el valor de la funcién seno, que oscilara suavemente entre —1 y +1.
3) Se multiplica por 8,,,, para escalar la oscilacién a la amplitud deseada.
4) Se asigna directamente a rotation.z. Al ser este nodo el padre de la varilla y la masa,

ambos rotardan rigidamente alrededor del punto de anclaje, simulando la fisica del
péndulo.

Ejercicio 1.10.5

Desarrolla un proyecto Godot para el ejemplo de animacién de una bala de canén. Las
condiciones y supuestos tedricos son:

1) La bola sale del caiién en una posicién inicial p(0) y con una velocidad inicial conocida
V.
La bola estd sujeta a la gravedad (g = 9,8 m/s%).

=W N

) No se consideran efectos de friccién con el aire.
) La animacién simula la trayectoria hasta que la bola vuelve a la altura inicial.

Ut

Se utiliza la ecuacién de la curva paramétrica: p(t) = p(0) + vot + 3at?, donde a =
(Ou -9, 0)

Solucion 1.10.5. Se presenta la implementacién de la trayectoria parabdlica de un proyectil. A
diferencia de las simulaciones fisicas que integran la velocidad frame a frame (Euler), este ejercicio
pide implementar la solucién analitica exacta (curva paramétrica) dependiente del tiempo acumulado

Informatica Grafica Ismael Sallami Moreno

1.10 SEesionN 11 154

1. Modelo Fisico-Matemdtico

La posicién p(t) en el instante ¢ se calcula mediante la férmula vectorial del movimiento uniforme-
mente acelerado:)

p(t):p0+vo~t+§-5-t2 (1.16)
Desglosando los componentes:

— Vector aceleracién (@): Si la gravedad actiia hacia abajo en el eje Y, entonces @ =
(0,-9,8,0).

— Vector velocidad inicial (vo): (vg, vy, v;). Es crucial que v, > 0 para que haya un arco
parabdlico.

— Duracién del vuelo: El proyectil vuelve a la altura y = 0 (suponiendo py = 0) en el instante
2voy

tfin = g

2. Configuracion de la Escena

1) Nodo Raiz (Node3D): Controlador de la escena.
2) Suelo (CSGBox3D): Referencia visual estatica.
3) Bala (MeshInstance3D o CSGSphere3D): El objeto mévil. Inicialmente en (0,0, 0).

3. Implementacién en GDScript

El siguiente script controla la posicién absoluta de la bala basdndose en el tiempo transcurrido
desde el disparo.

Cédigo 1.8: Script de Trayectoria Balistica Paramétrica

1 extends Node3D

3 # Parametros de lanzamiento (Vector3)

4 # v_y debe ser positiva para que suba.

55 # v_z o v_x dan el desplazamiento horizontal.

¢ export var velocidad_inicial: Vector3 = Vector3(e, 15, 10)
7 export var gravedad: float = 9.8

o # Variables de estado

10 var tiempo_vuelo: float = 0.0
11 var posicion_inicial: Vector3
12 var vector_gravedad: Vectors3

14 # Referencia al objeto visual
15 onready var bala = $Bala

17 func _ready():
18 # Guardamos la posicion original para reiniciar el ciclo

Informatica Grafica Ismael Sallami Moreno

1.10 SEesionN 11 155

19 if bala:

20 posicion_inicial = bala.global_position
21 else:

22 posicion_inicial = Vector3.ZERO

23

24 # Pre-calculamos el vector de aceleracion

25 vector_gravedad = Vector3(@, -gravedad, 0)
27 # Configuracion visual opcional (crear bala si no existe)
28 if not bala:

29 crear_bala_procedimental ()

31 func crear_bala_procedimental ():

32 var mesh = CSGSphere3D.new()

33 mesh.radius = 0.5

34 mesh.name = ''Bala''

35 add_child(mesh)

36 bala = mesh

37 mesh.global_position = posicion_inicial
38

39 # Material rojo para visibilidad

10 var mat = StandardMaterial3D.new()
11 mat.albedo_color = Color (1, o, 0)
42 mesh.material = mat

14 func _process(delta):
15 # 1. Acumular el tiempo real transcurrido

46 tiempo_vuelo += delta

17

18 # 2. Calcular la posicion usando la formula parametrica
exacta:

19 # p(t) = po + vOxt + 0.5 * a * t"2

50 var desplazamiento_vel = velocidad_inicial * tiempo_vuelo

51 var desplazamiento_acel = 0.5 * vector_gravedad * pow(

tiempo_vuelo, 2)

53 var nueva_posicion = posicion_inicial + desplazamiento_vel +
desplazamiento_acel

55 # 3. Aplicar al objeto
56 if bala:
57 bala.global_position = nueva_posicion

59 # 4. Logica de reinicio (Loop)

60 # Si la bala cae por debajo de la altura inicial y ha pasado
algo de tiempo

61 if nueva_posicion.y < posicion_inicial.y and tiempo_vuelo >
0.1:

Informatica Grafica Ismael Sallami Moreno

1.10 SEesionN 11 156

62 reiniciar_animacion ()

64 func reiniciar_animacion():

65 tiempo_vuelo = 0.0
66 if bala:
67 bala.global_position = posicion_inicial

69 # Opcional: Imprimir duracion teorica vs real

70 # T_teorico = 2 x Vy / g

71 # var t_teorico = (2.0 * velocidad_inicial.y) / gravedad
72 # print(''Ciclo completado. T esperado: '', t_teorico)

4. Andlisis del Codigo

— Calculo Vectorial: Se aprovecha la capacidad de Godot para operar con vectores comple-
tos (Vector3). La linea velocidad_inicial * tiempo_vuelo escala todas las componentes
simultaneamente.

— Gravedad: Se aplica como un vector constante hacia abajo (0, —9,8,0). El término cuadratico
(t2) es lo que genera la forma parabdlica caracterfstica: el movimiento horizontal es lineal
(velocidad constante), mientras que el vertical se frena y luego acelera hacia abajo.

— Reinicio: La condicién nueva_posicion.y < posicion_inicial.y detecta cuando el proyectil
ha completado el arco y cruza el plano del suelo, momento en el que se resetea el tiempo
t = 0 para repetir la animacién en bucle.

Informatica Grafica Ismael Sallami Moreno

Bibliografia

[1] Ismael Sallami Moreno, Estudiante del Doble Grado en Ingenieria Informética +
ADE, Universidad de Granada.

157

	I Teoría
	Ejercicios Teóricos
	Sesión 2
	Sesión 3
	Sesión 4
	Sesión 5
	Sesión 6
	Sesión 7
	Sesión 8
	Sesión 9
	Sesión 10
	Sesión 11

